

2001 AIME II

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1
Not yet answered

Points out of 5

Question 2

Not yet answered
Points out of 5

Question 3

Not yet answered
Points out of 5

Question 4

Not yet answered
Points out of 5

Let N be the largest positive integer with the following property: reading from left to right, each pair of consecutive digits of N forms a perfect square. What are the leftmost three digits of N ?

Answer:

\square

Each of the 2001 students at a high school studies either Spanish or French, and some study both. The number who study Spanish is between 80 percent and 85 percent of the school population, and the number who study French is between 30 percent and 40 percent. Let m be the smallest number of students who could study both languages, and let M be the largest number of students who could study both languages. Find $M-m$.

Answer:

\square

Given that

$$
\begin{aligned}
& x_{1}=211 \\
& x_{2}=375 \\
& x_{3}=420 \\
& x_{4}=523, \text { and } \\
& x_{n}=x_{n-1}-x_{n-2}+x_{n-3}-x_{n-4} \text { when } n \geq 5,
\end{aligned}
$$

find the value of $x_{531}+x_{753}+x_{975}$.

Answer:

\square

Let $R=(8,6)$. The lines whose equations are $8 y=15 x$ and $10 y=3 x$ contain points P and Q, respectively, such that R is the midpoint of $P Q$. The length of $P Q$ equals $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer: \square

Question 5

Not yet answered
Points out of 5

Question 6

Not yet answered
Points out of 5

Question 7

Not yet answered
Points out of 5

Question 8

Not yet answered
Points out of 5

A set of positive numbers has the triangle property if it has three distinct elements that are the lengths of the sides of a triangle whose area is positive. Consider sets $\{4,5,6, \ldots, n\}$ of consecutive positive integers, all of whose ten-element subsets have the triangle property. What is the largest possible value of n ?

Answer:

Square $A B C D$ is inscribed in a circle. Square $E F G H$ has vertices E and F on $\overline{C D}$ and vertices G and H on the circle. The ratio of the area of square $E F G H$ to the area of square $A B C D$ can be expressed as $\frac{m}{n}$ where m and n are relatively prime positive integers and $m<n$. Find $10 n+m$.

Answer:

Let $\triangle P Q R$ be a right triangle with $P Q=90, P R=120$, and $Q R=150$. Let C_{1} be the inscribed circle. Construct $\overline{S T}$ with S on $\overline{P R}$ and T on $\overline{Q R}$, such that $\overline{S T}$ is perpendicular to $\overline{P R}$ and tangent to C_{1}. Construct $\overline{U V}$ with U on $\overline{P Q}$ and V on $\overline{Q R}$ such that $\overline{U V}$ is perpendicular to $\overline{P Q}$ and tangent to C_{1}. Let C_{2} be the inscribed circle of $\triangle R S T$ and C_{3} the inscribed circle of $\triangle Q U V$. The distance between the centers of C_{2} and C_{3} can be written as $\sqrt{10 n}$. What is n ?

Answer:

A certain function f has the properties that $f(3 x)=3 f(x)$ for all positive real values of x, and that $f(x)=1-|x-2|$ for $1 \leq x \leq 3$. Find the smallest x for which $f(x)=f(2001)$.

Answer:

Each unit square of a 3-by-3 unit-square grid is to be colored either blue or red. For each square, either color is equally likely to be used. The probability of obtaining a grid that does not have a 2-by-2 red square is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

\square

Not yet answered
Points out of 5

Question 11

Not yet answered
Points out of 5

How many positive integer multiples of 1001 can be expressed in the form $10^{j}-10^{i}$, where i and j are integers and $0 \leq i<j \leq 99$?

Answer:

Club Truncator is in a soccer league with six other teams, each of which it plays once. In any of its 6 matches, the probabilities that Club Truncator will win, lose, or tie are each $\frac{1}{3}$. The probability that Club Truncator will finish the season with more wins than losses is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

Given a triangle, its midpoint triangle is obtained by joining the midpoints of its sides. A sequence of polyhedra P_{i} is defined recursively as follows: P_{0} is a regular tetrahedron whose volume is 1 . To obtain P_{i+1}, replace the midpoint triangle of every face of P_{i} by an outward-pointing regular tetrahedron that has the midpoint triangle as a face. The volume of P_{3} is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

In quadrilateral $A B C D, \angle B A D \cong \angle A D C$ and $\angle A B D \cong \angle B C D, A B=8$, $B D=10$, and $B C=6$. The length $C D$ may be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

There are $2 n$ complex numbers that satisfy both $z^{28}-z^{8}-1=0$ and $|z|=1$. These numbers have the form $z_{m}=\cos \theta_{m}+i \sin \theta_{m}$, where $0 \leq \theta_{1}<\theta_{2}<\ldots<\theta_{2 n}<360$ and angles are measured in degrees. Find the value of $\theta_{2}+\theta_{4}+\ldots+\theta_{2 n}$.

Answer:

Question 15
Not yet answered
Points out of 5

Let $E F G H, E F D C$, and $E H B C$ be three adjacent square faces of a cube, for which $E C=8$, and let A be the eighth vertex of the cube. Let I, J, and K, be the points on $\overline{E F}, \overline{E H}$, and $\overline{E C}$, respectively, so that $E I=E J=E K=2$. A solid S is obtained by drilling a tunnel through the cube. The sides of the tunnel are planes parallel to $\overline{A E}$, and containing the edges, $\overline{I J}, \overline{J K}$, and $\overline{K I}$. The surface area of S, including the walls of the tunnel, is $m+n \sqrt{p}$, where m, n, and p are positive integers and p is not divisible by the square of any prime. Find $m+n+p$.

Answer:

