

2002 AIME II

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1

Not yet answered

Points out of 5

Question 2

Not yet answered
Points out of 5

Question 3

Not yet answered
Points out of 5

Given that

(1) x and y are both integers between 100 and 999 , inclusive,
(2) y is the number formed by reversing the digits of x, and
(3) $z=|x-y|$.

How many distinct values of z are possible?

Answer:

\square

Three vertices of a cube are $P=(7,12,10), Q=(8,8,1)$, and $R=(11,3,9)$. What is the surface area of the cube?

Answer:

It is given that $\log _{6} a+\log _{6} b+\log _{6} c=6$, where a, b, and c are positive integers that form an increasing geometric sequence and $b-a$ is the square of an integer. Find $a+b+c$.

Answer:

Question 4

Not yet answered
Points out of 5

Question 5

Not yet answered
Points out of 5

Patio blocks that are hexagons 1 unit on a side are used to outline a garden by placing the blocks edge to edge with n on each side. The diagram indicates the path of blocks around the garden when $n=5$. If $n=202$, then the area of the garden enclosed by the path, not including the path itself, is $m(\sqrt{3} / 2)$ square units, where m is a positive integer.

Find the remainder when m is divided by 1000 .

Answer: \square

Find the sum of all positive integers $a=2^{n} 3^{m}$ where n and m are non-negative integers, for which a^{6} is not a divisor of 6^{a}

Answer:

Find the integer that is closest to $1000 \sum_{n=3}^{10000} \frac{1}{n^{2}-4}$.

Points out of 5

Question 6

Not yet answered

Question 7

Not yet answered
Points out of 5

Question 8

Not yet answered
Points out of 5

Question 9

Not yet answered
Points out of 5

Question 10

Not yet answered
Points out of 5

It is known that, for all positive integers k,

$$
1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Find the smallest positive integer k such that $1^{2}+2^{2}+3^{2}+\ldots+k^{2}$ is a multiple of 200.

Answer:

\square

Find the least positive integer k for which the equation $\left\lfloor\frac{2002}{n}\right\rfloor=k$ has no integer solutions for n. (The notation $\lfloor x\rfloor$ means the greatest integer less than or equal to x.)

Answer:

Let \mathcal{S} be the set $\{1,2,3, \ldots, 10\}$ Let n be the number of sets of two non-empty disjoint subsets of \mathcal{S}. (Disjoint sets are defined as sets that have no common elements.) Find the remainder obtained when n is divided by 1000 .

Answer:

While finding the sine of a certain angle, an absent-minded professor failed to notice that his calculator was not in the correct angular mode. He was lucky to get the right answer. The two least positive real values of x for which the sine of x degrees is the same as the sine of x radians are $\frac{m \pi}{n-\pi}$ and $\frac{p \pi}{q+\pi}$, where m, n, p, and q are positive integers. Find $m+n+p+q$.

Answer:

Two distinct, real, infinite geometric series each have a sum of 1 and have the same second term. The third term of one of the series is $1 / 8$, and the second term of both series can be written in the form $\frac{\sqrt{m}-n}{p}$, where m, n, and p are positive integers and m is not divisible by the square of any prime. Find $100 m+10 n+p$.

Answer:

Question 12

Not yet answered
Points out of 5

A basketball player has a constant probability of .4 of making any given shot, independent of previous shots. Let a_{n} be the ratio of shots made to shots attempted after n shots. The probability that $a_{10}=.4$ and $a_{n} \leq .4$ for all n such that $1 \leq n \leq 9$ is given to be $p^{a} q^{b} r /\left(s^{c}\right)$ where p, q, r, and s are primes, and a, b, and c are positive integers. Find $(p+q+r+s)(a+b+c)$.

Answer:

In triangle $A B C$, point D is on $\overline{B C}$ with $C D=2$ and $D B=5$, point E is on $\overline{A C}$ with $C E=1$ and $E A=3, A B=8$, and $\overline{A D}$ and $\overline{B E}$ intersect at P. Points Q and R lie on $\overline{A B}$ so that $\overline{P Q}$ is parallel to $\overline{C A}$ and $\overline{P R}$ is parallel to $\overline{C B}$. It is given that the ratio of the area of triangle $P Q R$ to the area of triangle $A B C$ is m / n, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

The perimeter of triangle $A P M$ is 152 , and the angle $P A M$ is a right angle. A circle of radius 19 with center O on $\overline{A P}$ is drawn so that it is tangent to $\overline{A M}$ and $\overline{P M}$. Given that $O P=m / n$ where m and n are relatively prime positive integers, find $m+n$.

Answer:

\square

Circles \mathcal{C}_{1} and \mathcal{C}_{2} intersect at two points, one of which is $(9,6)$, and the product of the radii is 68 . The x -axis and the line $y=m x$, where $m>0$, are tangent to both circles. It is given that m can be written in the form $a \sqrt{b} / c$, where a, b, and c are positive integers, b is not divisible by the square of any prime, and a and c are relatively prime. Find $a+b+c$.

Answer:

