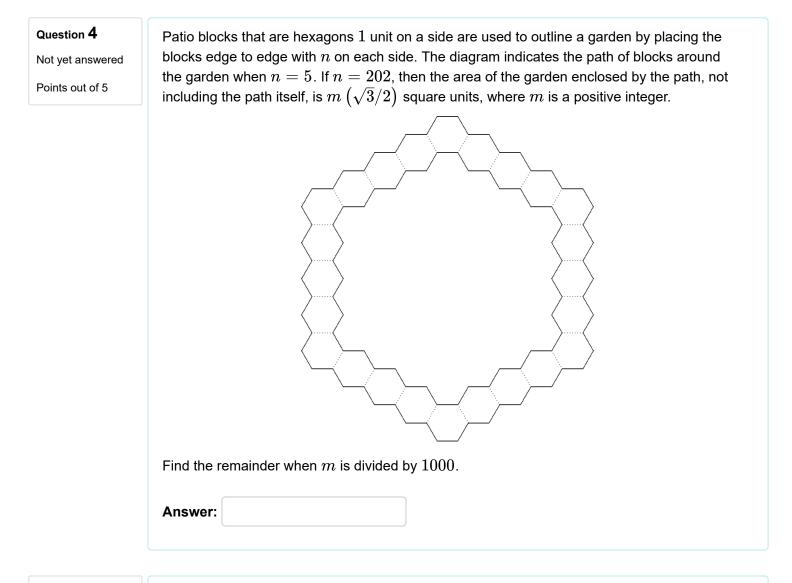


2002 AIME II

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1 Not yet answered Points out of 5	Given that (1) x and y are both integers between 100 and 999, inclusive, (2) y is the number formed by reversing the digits of x , and (3) $z = x - y $. How many distinct values of z are possible? Answer:
Question 2 Not yet answered Points out of 5	Three vertices of a cube are $P = (7, 12, 10)$, $Q = (8, 8, 1)$, and $R = (11, 3, 9)$. What is the surface area of the cube?
Question 3 Not yet answered Points out of 5	It is given that $\log_6 a + \log_6 b + \log_6 c = 6$, where a, b , and c are positive integers that form an increasing geometric sequence and $b - a$ is the square of an integer. Find $a + b + c$.



Question 5

Not yet answered

Points out of 5

Find the sum of all positive integers $a = 2^n 3^m$ where *n* and *m* are non-negative integers, for which a^6 is not a divisor of 6^a

Answer:	

Question 6 Not yet answered	Find the integer that is closest to $1000\sum_{n=3}^{10000}rac{1}{n^2-4}.$
Points out of 5	
	Answer:

Question 7 Not yet answered Points out of 5	It is known that, for all positive integers k , $1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$ Find the smallest positive integer k such that $1^2 + 2^2 + 3^2 + \dots + k^2$ is a multiple of 200. Answer:
Question 8 Not yet answered Points out of 5	Find the least positive integer k for which the equation $\lfloor \frac{2002}{n} \rfloor = k$ has no integer solutions for n . (The notation $\lfloor x \rfloor$ means the greatest integer less than or equal to x .) Answer:
Question 9 Not yet answered Points out of 5	Let S be the set $\{1, 2, 3,, 10\}$ Let n be the number of sets of two non-empty disjoint subsets of S . (Disjoint sets are defined as sets that have no common elements.) Find the remainder obtained when n is divided by 1000.
Question 10 Not yet answered Points out of 5	While finding the sine of a certain angle, an absent-minded professor failed to notice that his calculator was not in the correct angular mode. He was lucky to get the right answer. The two least positive real values of x for which the sine of x degrees is the same as the sine of x radians are $\frac{m\pi}{n-\pi}$ and $\frac{p\pi}{q+\pi}$, where m, n, p , and q are positive integers. Find $m+n+p+q$.
Question 11 Not yet answered Points out of 5	Two distinct, real, infinite geometric series each have a sum of 1 and have the same second term. The third term of one of the series is $1/8$, and the second term of both series can be written in the form $\frac{\sqrt{m-n}}{p}$, where m , n , and p are positive integers and m is not divisible by the square of any prime. Find $100m + 10n + p$.

Question 12 Not yet answered Points out of 5	A basketball player has a constant probability of .4 of making any given shot, independent of previous shots. Let a_n be the ratio of shots made to shots attempted after n shots. The probability that $a_{10} = .4$ and $a_n \leq .4$ for all n such that $1 \leq n \leq 9$ is given to be $p^a q^b r / (s^c)$ where p, q, r , and s are primes, and a, b , and c are positive integers. Find $(p+q+r+s)(a+b+c)$.
Question 13 Not yet answered Points out of 5	In triangle ABC , point D is on \overline{BC} with $CD = 2$ and $DB = 5$, point E is on \overline{AC} with $CE = 1$ and $EA = 3$, $AB = 8$, and \overline{AD} and \overline{BE} intersect at P . Points Q and R lie on \overline{AB} so that \overline{PQ} is parallel to \overline{CA} and \overline{PR} is parallel to \overline{CB} . It is given that the ratio of the area of triangle PQR to the area of triangle ABC is m/n , where m and n are relatively prime positive integers. Find $m + n$.
Question 14 Not yet answered Points out of 5	The perimeter of triangle APM is 152, and the angle PAM is a right angle. A circle of radius 19 with center O on \overline{AP} is drawn so that it is tangent to \overline{AM} and \overline{PM} . Given that $OP = m/n$ where m and n are relatively prime positive integers, find $m + n$.
Question 15 Not yet answered Points out of 5	Circles C_1 and C_2 intersect at two points, one of which is $(9, 6)$, and the product of the radii is 68. The x-axis and the line $y = mx$, where $m > 0$, are tangent to both circles. It is given that m can be written in the form $a\sqrt{b}/c$, where a , b , and c are positive integers, b is not divisible by the square of any prime, and a and c are relatively prime. Find $a + b + c$. Answer: