

2005 AIME I

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1 Not yet answered Points out of 5	Six congruent circles form a ring with each circle externally tangent to two circles adjacent to it. All circles are internally tangent to a circle C with radius 30. Let K be the area of the region inside circle C and outside of the six circles in the ring. Find $\lfloor K \rfloor$ (the floor function).
Question 2 Not yet answered Points out of 5	For each positive integer k , let S_k denote the increasing arithmetic sequence of integers whose first term is 1 and whose common difference is k . For example, S_3 is the sequence $1, 4, 7, 10, \ldots$. For how many values of k does S_k contain the term 2005?
Question 3 Not yet answered Points out of 5	How many positive integers have exactly three proper divisors (positive integral divisors excluding itself), each of which is less than 50? Answer:
Question 4 Not yet answered Points out of 5	The director of a marching band wishes to place the members into a formation that includes all of them and has no unfilled positions. If they are arranged in a square formation, there are 5 members left over. The director realizes that if he arranges the group in a formation with 7 more rows than columns, there are no members left over. Find the maximum number of members this band can have.
Question 5 Not yet answered Points out of 5	Robert has 4 indistinguishable gold coins and 4 indistinguishable silver coins. Each coin has an engraving of one face on one side, but not on the other. He wants to stack the eight coins on a table into a single stack so that no two adjacent coins are face to face. Find the number of possible distinguishable arrangements of the 8 coins.

Question 6 Not yet answered Points out of 5	Let P be the product of the nonreal roots of $x^4 - 4x^3 + 6x^2 - 4x = 2005$. Find $\lfloor P \rfloor$. Answer:
Question 7 Not yet answered Points out of 5	In quadrilateral $ABCD$, $BC = 8$, $CD = 12$, $AD = 10$, and $m \angle A = m \angle B = 60^{\circ}$. Given that $AB = p + \sqrt{q}$, where p and q are positive integers, find $p + q$. Answer:
Question 8 Not yet answered Points out of 5	The equation $2^{333x-2} + 2^{111x+2} = 2^{222x+1} + 1$ has three real roots. Given that their sum is $\frac{m}{n}$ where m and n are relatively prime positive integers, find $m + n$. Answer:
Question 9 Not yet answered Points out of 5	Twenty seven unit cubes are painted orange on a set of four faces so that two non-painted faces share an edge. The 27 cubes are randomly arranged to form a $3 \times 3 \times 3$ cube. Given the probability of the entire surface area of the larger cube is orange is $\frac{p^a}{q^b r^c}$, where p, q , and r are distinct primes and a, b , and c are positive integers, find $a + b + c + p + q + r$.
Question 10 Not yet answered Points out of 5	Triangle ABC lies in the cartesian plane and has an area of 70. The coordinates of B and C are $(12, 19)$ and $(23, 20)$, respectively, and the coordinates of A are (p, q) . The line containing the median to side BC has slope -5 . Find the largest possible value of $p + q$. Answer:
Question 11 Not yet answered Points out of 5	A semicircle with diameter d is contained in a square whose sides have length 8. Given the maximum value of d is $m - \sqrt{n}$, find $m + n$. Answer:

Question 12 Not yet answered Points out of 5	For positive integers n , let $\tau(n)$ denote the number of positive integer divisors of n , including 1 and n . For example, $\tau(1) = 1$ and $\tau(6) = 4$. Define $S(n)$ by $S(n) = \tau(1) + \tau(2) + \cdots + \tau(n)$. Let a denote the number of positive integers $n \le 2005$ with $S(n)$ odd, and let b denote the number of positive integers $n \le 2005$ with $S(n)$ even. Find $ a - b $.
Question 13 Not yet answered Points out of 5	A particle moves in the Cartesian plane according to the following rules: 1. From any lattice point (a, b) , the particle may only move to $(a + 1, b)$, $(a, b + 1)$, or (a + 1, b + 1). 2. There are no right angle turns in the particle's path. How many different paths can the particle take from $(0, 0)$ to $(5, 5)$? Answer:
Question 14 Not yet answered Points out of 5	Consider the points $A(0, 12), B(10, 9), C(8, 0)$, and $D(-4, 7)$. There is a unique square S such that each of the four points is on a different side of S . Let K be the area of S . Find the remainder when $10K$ is divided by 1000 .
Question 15 Not yet answered Points out of 5	Triangle ABC has $BC = 20$. The incircle of the triangle evenly trisects the median AD . If the area of the triangle is $m\sqrt{n}$ where m and n are integers and n is not divisible by the square of a prime, find $m + n$. Answer: