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Question 1
Not yet answered

Points out of 5

Question 2
Not yet answered

Points out of 5

Question 3
Not yet answered

Points out of 5

Question 4
Not yet answered

Points out of 5

Question 5
Not yet answered

Points out of 5

Six congruent circles form a ring with each circle externally tangent to two circles adjacent
to it. All circles are internally tangent to a circle  with radius 30. Let  be the area of the
region inside circle  and outside of the six circles in the ring. Find  (the floor function).

Answer:

For each positive integer , let  denote the increasing arithmetic sequence of integers
whose first term is  and whose common difference is . For example,  is the sequence 

 For how many values of  does  contain the term ?

Answer:

How many positive integers have exactly three proper divisors (positive integral divisors
excluding itself), each of which is less than 50?

Answer:

The director of a marching band wishes to place the members into a formation that includes
all of them and has no unfilled positions. If they are arranged in a square formation, there
are  members left over. The director realizes that if he arranges the group in a formation
with  more rows than columns, there are no members left over. Find the maximum number
of members this band can have.

Answer:

Robert has 4 indistinguishable gold coins and 4 indistinguishable silver coins. Each coin has
an engraving of one face on one side, but not on the other. He wants to stack the eight
coins on a table into a single stack so that no two adjacent coins are face to face. Find the
number of possible distinguishable arrangements of the 8 coins.

Answer:
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Question 6
Not yet answered

Points out of 5

Question 7
Not yet answered

Points out of 5

Question 8
Not yet answered

Points out of 5

Question 9
Not yet answered

Points out of 5

Question 10
Not yet answered

Points out of 5

Question 11
Not yet answered

Points out of 5

Let  be the product of the nonreal roots of  Find 

Answer:

In quadrilateral  and 
Given that  where  and  are positive integers, find 

Answer:

The equation  has three real roots. Given that their sum
is  where  and  are relatively prime positive integers, find 

Answer:

Twenty seven unit cubes are painted orange on a set of four faces so that two non-painted
faces share an edge. The 27 cubes are randomly arranged to form a  cube.

Given the probability of the entire surface area of the larger cube is orange is  where 

 and  are distinct primes and  and  are positive integers, find 

Answer:

Triangle  lies in the cartesian plane and has an area of . The coordinates of  and 
 are  and  respectively, and the coordinates of  are  The line

containing the median to side  has slope  Find the largest possible value of 

Answer:

A semicircle with diameter  is contained in a square whose sides have length 8. Given the
maximum value of  is  find 

Answer:
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Question 12
Not yet answered

Points out of 5

Question 13
Not yet answered

Points out of 5

Question 14
Not yet answered

Points out of 5

Question 15
Not yet answered

Points out of 5

For positive integers  let  denote the number of positive integer divisors of 
including 1 and  For example,  and  Define  by 

 Let  denote the number of positive integers 
 with  odd, and let  denote the number of positive integers  with 

 even. Find 

Answer:

A particle moves in the Cartesian plane according to the following rules:

1. From any lattice point , the particle may only move to , , or 
.

2. There are no right angle turns in the particle's path.

How many different paths can the particle take from  to ?

Answer:

Consider the points  and  There is a unique
square  such that each of the four points is on a different side of  Let  be the area of 

 Find the remainder when  is divided by .

Answer:

Triangle  has  The incircle of the triangle evenly trisects the median  If
the area of the triangle is  where  and  are integers and  is not divisible by the
square of a prime, find 

Answer:
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