

2005 AIME I

For more practice and resources, visit ziml.areteem.org

Question 1
Not yet answered

Points out of 5

Question 2

Not yet answered
Points out of 5

Question 3

Not yet answered
Points out of 5

Question 4

Not yet answered
Points out of 5

Six congruent circles form a ring with each circle externally tangent to two circles adjacent to it. All circles are internally tangent to a circle C with radius 30 . Let K be the area of the region inside circle C and outside of the six circles in the ring. Find $\lfloor K\rfloor$ (the floor function).

Answer:

\square

For each positive integer k, let S_{k} denote the increasing arithmetic sequence of integers whose first term is 1 and whose common difference is k. For example, S_{3} is the sequence $1,4,7,10, \ldots$ For how many values of k does S_{k} contain the term 2005?

Answer:

\square

How many positive integers have exactly three proper divisors (positive integral divisors excluding itself), each of which is less than 50 ?

Answer:

The director of a marching band wishes to place the members into a formation that includes all of them and has no unfilled positions. If they are arranged in a square formation, there are 5 members left over. The director realizes that if he arranges the group in a formation with 7 more rows than columns, there are no members left over. Find the maximum number of members this band can have.

Answer:

Robert has 4 indistinguishable gold coins and 4 indistinguishable silver coins. Each coin has an engraving of one face on one side, but not on the other. He wants to stack the eight coins on a table into a single stack so that no two adjacent coins are face to face. Find the number of possible distinguishable arrangements of the 8 coins.

Answer: \square

Question 6

Not yet answered
Points out of 5

Question 7

Not yet answered
Points out of 5

Let P be the product of the nonreal roots of $x^{4}-4 x^{3}+6 x^{2}-4 x=2005$. Find $\lfloor P\rfloor$.

Answer:

\square

Given that $A B=p+\sqrt{q}$, where p and q are positive integers, find $p+q$.

Answer:

The equation $2^{333 x-2}+2^{111 x+2}=2^{222 x+1}+1$ has three real roots. Given that their sum is $\frac{m}{n}$ where m and n are relatively prime positive integers, find $m+n$.

Answer:

Twenty seven unit cubes are painted orange on a set of four faces so that two non-painted faces share an edge. The 27 cubes are randomly arranged to form a $3 \times 3 \times 3$ cube. Given the probability of the entire surface area of the larger cube is orange is $\frac{p^{a}}{q^{b} r^{c}}$, where p, q, and r are distinct primes and a, b, and c are positive integers, find $a+b+c+p+q+r$.

Answer:

Triangle $A B C$ lies in the cartesian plane and has an area of 70 . The coordinates of B and C are $(12,19)$ and $(23,20)$, respectively, and the coordinates of A are (p, q). The line containing the median to side $B C$ has slope -5 . Find the largest possible value of $p+q$.

Answer:

\square

A semicircle with diameter d is contained in a square whose sides have length 8 . Given the maximum value of d is $m-\sqrt{n}$, find $m+n$.

Answer:

Question 12

Not yet answered
Points out of 5

Question 13

Not yet answered
Points out of 5

Question 14

Not yet answered
Points out of 5

Question 15

Not yet answered
Points out of 5

For positive integers n, let $\tau(n)$ denote the number of positive integer divisors of n, including 1 and n. For example, $\tau(1)=1$ and $\tau(6)=4$. Define $S(n)$ by $S(n)=\tau(1)+\tau(2)+\cdots+\tau(n)$. Let a denote the number of positive integers $n \leq 2005$ with $S(n)$ odd, and let b denote the number of positive integers $n \leq 2005$ with $S(n)$ even. Find $|a-b|$.

Answer:

A particle moves in the Cartesian plane according to the following rules:

1. From any lattice point (a, b), the particle may only move to $(a+1, b),(a, b+1)$, or $(a+1, b+1)$.
2. There are no right angle turns in the particle's path.

How many different paths can the particle take from $(0,0)$ to $(5,5)$?

Answer:

\square

Consider the points $A(0,12), B(10,9), C(8,0)$, and $D(-4,7)$. There is a unique square S such that each of the four points is on a different side of S. Let K be the area of S. Find the remainder when $10 K$ is divided by 1000 .

Answer:

Triangle $A B C$ has $B C=20$. The incircle of the triangle evenly trisects the median $A D$. If the area of the triangle is $m \sqrt{n}$ where m and n are integers and n is not divisible by the square of a prime, find $m+n$.

Answer: \square

