

2006 AIME I

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1 Not yet answered Points out of 5	In quadrilateral $ABCD$, $\angle B$ is a right angle, diagonal \overline{AC} is perpendicular to \overline{CD} , $AB = 18$, $BC = 21$, and $CD = 14$. Find the perimeter of $ABCD$. Answer:
Question 2 Not yet answered Points out of 5	Let set \mathcal{A} be a 90-element subset of $\{1, 2, 3, \dots, 100\}$, and let S be the sum of the elements of \mathcal{A} . Find the number of possible values of S . Answer:
Question 3 Not yet answered Points out of 5	Find the least positive integer such that when its leftmost digit is deleted, the resulting integer is $\frac{1}{29}$ of the original integer.
Question 4 Not yet answered Points out of 5	Let N be the number of consecutive 0's at the right end of the decimal representation of the product $1!2!3!4!\cdots 99!100!$. Find the remainder when N is divided by 1000 . Answer:
Question 5 Not yet answered Points out of 5	The number $\sqrt{104\sqrt{6} + 468\sqrt{10} + 144\sqrt{15} + 2006}$ can be written as $a\sqrt{2} + b\sqrt{3} + c\sqrt{5}$, where a, b , and c are positive integers. Find abc . Answer:
Question 6 Not yet answered Points out of 5	Let S be the set of real numbers that can be represented as repeating decimals of the form $0.\overline{abc}$ where a, b, c are distinct digits. Find the sum of the elements of S . Answer:

Answer:

Question 10

Not yet answered

Points out of 5

Eight circles of diameter 1 are packed in the first quadrant of the coordinate plane as shown. Let region \mathcal{R} be the union of the eight circular regions. Line l, with slope 3, divides \mathcal{R} into two regions of equal area. Line l's equation can be expressed in the form ax = by + c, where a, b, and c are positive integers whose greatest common divisor is 1. Find $a^2 + b^2 + c^2$.

Answer:

Question 11 Not yet answered Points out of 5	A collection of 8 cubes consists of one cube with edge-length k for each integer $k, 1 \le k \le 8$. A tower is to be built using all 8 cubes according to the rules: Let T be the number of different towers than can be constructed. What is the remainder when T is divided by 1000?
Question 12 Not yet answered Points out of 5	Find the sum of the values of x such that $\cos^3 3x + \cos^3 5x = 8\cos^3 4x\cos^3 x$, where x is measured in degrees and $100 < x < 200$.
Question 13 Not yet answered Points out of 5	For each even positive integer x , let $g(x)$ denote the greatest power of 2 that divides x . For example, $g(20) = 4$ and $g(16) = 16$. For each positive integer n , let $S_n = \sum_{k=1}^{2^{n-1}} g(2k)$. Find the greatest integer n less than 1000 such that S_n is a perfect square.

Question 14 Not yet answered Points out of 5	A tripod has three legs each of length 5 feet. When the tripod is set up, the angle between any pair of legs is equal to the angle between any other pair, and the top of the tripod is 4 feet from the ground. In setting up the tripod, the lower 1 foot of one leg breaks off. Let h be the height in feet of the top of the tripod from the ground when the broken tripod is set up. Then h can be written in the form $\frac{m}{\sqrt{n}}$, where m and n are positive integers and n is not divisible by the square of any prime. Find $\lfloor m + \sqrt{n} \rfloor$. (The notation $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to x .)
Question 15 Not yet answered Points out of 5	Given that a sequence satisfies $x_0 = 0$ and $ x_k = x_{k-1} + 3 $ for all integers $k \ge 1$, find the minimum possible value of $ x_1 + x_2 + \cdots + x_{2006} $. Answer: