

2006 AIME I

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1
Not yet answered
Points out of 5

Question 2

Not yet answered
Points out of 5

Question 3

Not yet answered
Points out of 5

Question 4

Not yet answered
Points out of 5

Question 5

Not yet answered
Points out of 5

Question 6

Not yet answered
Points out of 5

In quadrilateral $A B C D, \angle B$ is a right angle, diagonal $\overline{A C}$ is perpendicular to $\overline{C D}$, $A B=18, B C=21$, and $C D=14$. Find the perimeter of $A B C D$.

Answer:

Let set \mathcal{A} be a 90 -element subset of $\{1,2,3, \ldots, 100\}$, and let S be the sum of the elements of \mathcal{A}. Find the number of possible values of S.

Answer:

Find the least positive integer such that when its leftmost digit is deleted, the resulting integer is $\frac{1}{29}$ of the original integer.

Answer:

Let N be the number of consecutive 0 's at the right end of the decimal representation of the product $1!2!3!4!\cdots 99!100$!. Find the remainder when N is divided by 1000 .

Answer:

The number $\sqrt{104 \sqrt{6}+468 \sqrt{10}+144 \sqrt{15}+2006}$ can be written as $a \sqrt{2}+b \sqrt{3}+c \sqrt{5}$, where a, b, and c are positive integers. Find $a b c$.

Answer:

Let \mathcal{S} be the set of real numbers that can be represented as repeating decimals of the form $0 . \overline{a b c}$ where a, b, c are distinct digits. Find the sum of the elements of \mathcal{S}.

Answer:

Question 7

Not yet answered
Points out of 1

Question 8

Not yet answered
Points out of 5

An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region \mathcal{C} to the area of shaded region \mathcal{B} is $11 / 5$. Find the ratio of shaded region \mathcal{D} to the area of shaded region \mathcal{A}.

Answer: \square

Hexagon $A B C D E F$ is divided into five rhombuses, $\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}$, and \mathcal{T}, as shown. Rhombuses $\mathcal{P}, \mathcal{Q}, \mathcal{R}$, and \mathcal{S} are congruent, and each has area $\sqrt{2006}$. Let K be the area of rhombus \mathcal{T}. Given that K is a positive integer, find the number of possible values for K.

Answer: \square

The sequence a_{1}, a_{2}, \ldots is geometric with $a_{1}=a$ and common ratio r, where a and r are positive integers. Given that $\log _{8} a_{1}+\log _{8} a_{2}+\cdots+\log _{8} a_{12}=2006$, find the number of possible ordered pairs (a, r).

Answer: \square

Question 10

Not yet answered
Points out of 5

Question 11

Not yet answered

Points out of 5

Eight circles of diameter 1 are packed in the first quadrant of the coordinate plane as shown. Let region \mathcal{R} be the union of the eight circular regions. Line l, with slope 3 , divides \mathcal{R} into two regions of equal area. Line l 's equation can be expressed in the form $a x=b y+c$, where a, b, and c are positive integers whose greatest common divisor is 1 . Find $a^{2}+b^{2}+c^{2}$.

Answer:

\square

A collection of 8 cubes consists of one cube with edge-length k for each integer $k, 1 \leq k \leq 8$. A tower is to be built using all 8 cubes according to the rules:

Let T be the number of different towers than can be constructed. What is the remainder when T is divided by 1000 ?

Answer:

Find the sum of the values of x such that $\cos ^{3} 3 x+\cos ^{3} 5 x=8 \cos ^{3} 4 x \cos ^{3} x$, where x is measured in degrees and $100<x<200$.

Answer:

For each even positive integer x, let $g(x)$ denote the greatest power of 2 that divides x. For example, $g(20)=4$ and $g(16)=16$. For each positive integer n, let $S_{n}=\sum_{k=1}^{2^{n-1}} g(2 k)$. Find the greatest integer n less than 1000 such that S_{n} is a perfect square.

Answer:

Question 14
Not yet answered
Points out of 5

A tripod has three legs each of length 5 feet. When the tripod is set up, the angle between any pair of legs is equal to the angle between any other pair, and the top of the tripod is 4 feet from the ground. In setting up the tripod, the lower 1 foot of one leg breaks off. Let h be the height in feet of the top of the tripod from the ground when the broken tripod is set up. Then h can be written in the form $\frac{m}{\sqrt{n}}$, where m and n are positive integers and n is not divisible by the square of any prime. Find $\lfloor m+\sqrt{n}\rfloor$. (The notation $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to x.)

Answer:

Given that a sequence satisfies $x_{0}=0$ and $\left|x_{k}\right|=\left|x_{k-1}+3\right|$ for all integers $k \geq 1$, find the minimum possible value of $\left|x_{1}+x_{2}+\cdots+x_{2006}\right|$.

Points out of 5

