

2009 AIME I

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1 Not yet answered Points out of 5	Call a 3-digit number <i>geometric</i> if it has 3 distinct digits which, when read from left to right, form a geometric sequence. Find the difference between the largest and smallest geometric numbers.
Question 2 Not yet answered Points out of 5	There is a complex number z with imaginary part 164 and a positive integer n such that $\frac{z}{z+n}=4i.$ Find $n.$
Question 3 Not yet answered Points out of 5	A coin that comes up heads with probability $p > 0$ and tails with probability $1 - p > 0$ independently on each flip is flipped eight times. Suppose the probability of three heads and five tails is equal to $\frac{1}{25}$ of the probability of five heads and three tails. Let $p = \frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$. Answer:
Question 4 Not yet answered Points out of 5	In parallelogram $ABCD$, point M is on \overline{AB} so that $\frac{AM}{AB} = \frac{17}{1000}$ and point N is on \overline{AD} so that $\frac{AN}{AD} = \frac{17}{2009}$. Let P be the point of intersection of \overline{AC} and \overline{MN} . Find $\frac{AC}{AP}$. Answer:
Question 5 Not yet answered Points out of 5	Triangle ABC has $AC = 450$ and $BC = 300$. Points K and L are located on \overline{AC} and \overline{AB} respectively so that $AK = CK$, and \overline{CL} is the angle bisector of angle C . Let P be the point of intersection of \overline{BK} and \overline{CL} , and let M be the point on line BK for which K is the midpoint of \overline{PM} . If $AM = 180$, find LP . Answer:

Question 6 Not yet answered Points out of 5	How many positive integers N less than 1000 are there such that the equation $x^{\lfloor x \rfloor} = N$ has a solution for x ? (The notation $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to x .) Answer:
Question 7 Not yet answered Points out of 5	The sequence (a_n) satisfies $a_1 = 1$ and $5^{(a_{n+1}-a_n)} - 1 = \frac{1}{n+\frac{2}{3}}$ for $n \ge 1$. Let k be the least integer greater than 1 for which a_k is an integer. Find k . Answer:
Question 8 Not yet answered Points out of 5	Let $S = \{2^0, 2^1, 2^2, \dots, 2^{10}\}$. Consider all possible positive differences of pairs of elements of S . Let N be the sum of all of these differences. Find the remainder when N is divided by 1000.
Question 9 Not yet answered Points out of 5	A game show offers a contestant three prizes A, B and C, each of which is worth a whole number of dollars from \$1 to \$9999 inclusive. The contestant wins the prizes by correctly guessing the price of each prize in the order A, B, C. As a hint, the digits of the three prices are given. On a particular day, the digits given were $1, 1, 1, 1, 3, 3, 3$. Find the total number of possible guesses for all three prizes consistent with the hint.
Question 10 Not yet answered Points out of 5	The Annual Interplanetary Mathematics Examination (AIME) is written by a committee of five Martians, five Venusians, and five Earthlings. At meetings, committee members sit at a round table with chairs numbered from 1 to 15 in clockwise order. Committee rules state that a Martian must occupy chair 1 and an Earthling must occupy chair 15, Furthermore, no Earthling can sit immediately to the left of a Martian, no Martian can sit immediately to the left of a Venusian, and no Venusian can sit immediately to the left of an Earthling. The number of possible seating arrangements for the committee is $N(5!)^3$. Find N .

Question 11 Not yet answered Points out of 5	Consider the set of all triangles OPQ where O is the origin and P and Q are distinct points in the plane with nonnegative integer coordinates (x, y) such that $41x + y = 2009$. Find the number of such distinct triangles whose area is a positive integer.
Question 12 Not yet answered Points out of 5	In right $\triangle ABC$ with hypotenuse \overline{AB} , $AC = 12$, $BC = 35$, and \overline{CD} is the altitude to \overline{AB} . Let ω be the circle having \overline{CD} as a diameter. Let I be a point outside $\triangle ABC$ such that \overline{AI} and \overline{BI} are both tangent to circle ω . The ratio of the perimeter of $\triangle ABI$ to the length AB can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$.
	Answer:
Question 13 Not yet answered Points out of 5	The terms of the sequence (a_i) defined by $a_{n+2} = \frac{a_n + 2009}{1 + a_{n+1}}$ for $n \ge 1$ are positive integers. Find the minimum possible value of $a_1 + a_2$. Answer:
Question 14 Not yet answered Points out of 5	For $t=1,2,3,4$, define $S_t=\sum_{i=1}^{350}a_i^t$, where $a_i\in\{1,2,3,4\}$. If $S_1=513$ and $S_4=4745$, find the minimum possible value for S_2 .
Question 15 Not yet answered Points out of 5	In triangle ABC , $AB = 10$, $BC = 14$, and $CA = 16$. Let D be a point in the interior of \overline{BC} . Let I_B and I_C denote the incenters of triangles ABD and ACD , respectively. The circumcircles of triangles BI_BD and CI_CD meet at distinct points P and D . The maximum possible area of $\triangle BPC$ can be expressed in the form $a - b\sqrt{c}$, where a, b , and c are positive integers and c is not divisible by the square of any prime. Find $a + b + c$.