

2009 AIME I

For more practice and resources, visit ziml.areteem.org

Question 1
Not yet answered
Points out of 5

Question 2

Not yet answered
Points out of 5

Question 3

Not yet answered
Points out of 5

Call a 3 -digit number geometric if it has 3 distinct digits which, when read from left to right, form a geometric sequence. Find the difference between the largest and smallest geometric numbers.

Answer:

\qquad

There is a complex number z with imaginary part 164 and a positive integer n such that

$$
\frac{z}{z+n}=4 i .
$$

Find n.

Answer: \square

A coin that comes up heads with probability $p>0$ and tails with probability $1-p>0$ independently on each flip is flipped eight times. Suppose the probability of three heads and five tails is equal to $\frac{1}{25}$ of the probability of five heads and three tails. Let $p=\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

In parallelogram $A B C D$, point M is on $\overline{A B}$ so that $\frac{A M}{A B}=\frac{17}{1000}$ and point N is on $\overline{A D}$ so that $\frac{A N}{A D}=\frac{17}{2009}$. Let P be the point of intersection of $\overline{A C}$ and $\overline{M N}$. Find $\frac{A C}{A P}$.

Answer:

Triangle $A B C$ has $A C=450$ and $B C=300$. Points K and L are located on $\overline{A C}$ and $\overline{A B}$ respectively so that $A K=C K$, and $\overline{C L}$ is the angle bisector of angle C. Let P be the point of intersection of $\overline{B K}$ and $\overline{C L}$, and let M be the point on line $B K$ for which K is the midpoint of $\overline{P M}$. If $A M=180$, find $L P$.

Answer: \square

Question 6

Not yet answered
Points out of 5

Question 7
Not yet answered
Points out of 5

Question 8

Not yet answered
Points out of 5

Question 9

Not yet answered
Points out of 5

How many positive integers N less than 1000 are there such that the equation $x^{\lfloor x\rfloor}=N$ has a solution for x ? (The notation $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to x.)

Answer:

The sequence $\left(a_{n}\right)$ satisfies $a_{1}=1$ and $5^{\left(a_{n+1}-a_{n}\right)}-1=\frac{1}{n+\frac{2}{3}}$ for $n \geq 1$. Let k be the least integer greater than 1 for which a_{k} is an integer. Find k.

Answer:

Let $S=\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{10}\right\}$. Consider all possible positive differences of pairs of elements of S. Let N be the sum of all of these differences. Find the remainder when N is divided by 1000 .

Answer:

A game show offers a contestant three prizes A, B and C , each of which is worth a whole number of dollars from $\$ 1$ to $\$ 9999$ inclusive. The contestant wins the prizes by correctly guessing the price of each prize in the order A, B, C. As a hint, the digits of the three prices are given. On a particular day, the digits given were $1,1,1,1,3,3,3$. Find the total number of possible guesses for all three prizes consistent with the hint.

Answer:

The Annual Interplanetary Mathematics Examination (AIME) is written by a committee of five Martians, five Venusians, and five Earthlings. At meetings, committee members sit at a round table with chairs numbered from 1 to 15 in clockwise order. Committee rules state that a Martian must occupy chair 1 and an Earthling must occupy chair 15, Furthermore, no Earthling can sit immediately to the left of a Martian, no Martian can sit immediately to the left of a Venusian, and no Venusian can sit immediately to the left of an Earthling. The number of possible seating arrangements for the committee is $N(5!)^{3}$. Find N.

Answer:

\square

Question 11

Not yet answered
Points out of 5

Consider the set of all triangles $O P Q$ where O is the origin and P and Q are distinct points in the plane with nonnegative integer coordinates (x, y) such that $41 x+y=2009$. Find the number of such distinct triangles whose area is a positive integer.

Answer:

In right $\triangle A B C$ with hypotenuse $\overline{A B}, A C=12, B C=35$, and $\overline{C D}$ is the altitude to $\overline{A B}$. Let ω be the circle having $\overline{C D}$ as a diameter. Let I be a point outside $\triangle A B C$ such that $\overline{A I}$ and $\overline{B I}$ are both tangent to circle ω. The ratio of the perimeter of $\triangle A B I$ to the length $A B$ can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

\square

The terms of the sequence $\left(a_{i}\right)$ defined by $a_{n+2}=\frac{a_{n}+2009}{1+a_{n+1}}$ for $n \geq 1$ are positive integers. Find the minimum possible value of $a_{1}+a_{2}$.

Answer:

For $t=1,2,3,4$, define $S_{t}=\sum_{i=1}^{350} a_{i}^{t}$, where $a_{i} \in\{1,2,3,4\}$. If $S_{1}=513$ and $S_{4}=4745$, find the minimum possible value for S_{2}.

Answer:

In triangle $A B C, A B=10, B C=14$, and $C A=16$. Let D be a point in the interior of $\overline{B C}$. Let I_{B} and I_{C} denote the incenters of triangles $A B D$ and $A C D$, respectively. The circumcircles of triangles $B I_{B} D$ and $C I_{C} D$ meet at distinct points P and D. The maximum possible area of $\triangle B P C$ can be expressed in the form $a-b \sqrt{c}$, where a, b, and c are positive integers and c is not divisible by the square of any prime. Find $a+b+c$.

Answer:

\square

