

2010 AIME I

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1 Not yet answered Points out of 5	Maya lists all the positive divisors of 2010^2 . She then randomly selects two distinct divisors from this list. Let p be the probability that exactly one of the selected divisors is a perfect square. The probability p can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$.
Question 2 Not yet answered Points out of 5	Find the remainder when $9 \times 99 \times 999 \times \cdots \times 99 \cdots 9_{999 \ 9's}$ is divided by 1000. Answer:
Question 3 Not yet answered Points out of 5	Suppose that $y = \frac{3}{4}x$ and $x^y = y^x$. The quantity $x + y$ can be expressed as a rational number $\frac{r}{s}$, where r and s are relatively prime positive integers. Find $r + s$.
Question 4 Not yet answered Points out of 5	Jackie and Phil have two fair coins and a third coin that comes up heads with probability $\frac{4}{7}$. Jackie flips the three coins, and then Phil flips the three coins. Let $\frac{m}{n}$ be the probability that Jackie gets the same number of heads as Phil, where m and n are relatively prime positive integers. Find $m + n$.
Question 5 Not yet answered Points out of 5	Positive integers a , b , c , and d satisfy $a > b > c > d$, $a + b + c + d = 2010$, and $a^2 - b^2 + c^2 - d^2 = 2010$. Find the number of possible values of a . Answer:
Question 6 Not yet answered Points out of 5	Let $P(x)$ be a quadratic polynomial with real coefficients satisfying $x^2 - 2x + 2 \le P(x) \le 2x^2 - 4x + 3$ for all real numbers x , and suppose P(11) = 181. Find $P(16)$. Answer:

Question 7 Not yet answered Points out of 5	Define an ordered triple (A, B, C) of sets to be <i>minimally intersecting</i> if $ A \cap B = B \cap C = C \cap A = 1$ and $A \cap B \cap C = \emptyset$. For example, $(\{1, 2\}, \{2, 3\}, \{1, 3, 4\})$ is a minimally intersecting triple. Let N be the number of minimally intersecting ordered triples of sets for which each set is a subset of $\{1, 2, 3, 4, 5, 6, 7\}$. Find the remainder when N is divided by 1000. Note: $ S $ represents the number of elements in the set S .
Question 8 Not yet answered Points out of 5	For a real number a , let $\lfloor a \rfloor$ denominate the greatest integer less than or equal to a . Let \mathcal{R} denote the region in the coordinate plane consisting of points (x, y) such that $\lfloor x \rfloor^2 + \lfloor y \rfloor^2 = 25$. The region \mathcal{R} is completely contained in a disk of radius r (a disk is the union of a circle and its interior). The minimum value of r can be written as $\frac{\sqrt{m}}{n}$, where m and n are integers and m is not divisible by the square of any prime. Find $m + n$.
Question 9 Not yet answered Points out of 5	Let (a, b, c) be the real solution of the system of equations $x^3 - xyz = 2$, $y^3 - xyz = 6$, $z^3 - xyz = 20$. The greatest possible value of $a^3 + b^3 + c^3$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$. Answer:
Question 10 Not yet answered Points out of 5	Let N be the number of ways to write 2010 in the form $2010 = a_3 \cdot 10^3 + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$, where the a_i 's are integers, and $0 \le a_i \le 99$. An example of such a representation is $1 \cdot 10^3 + 3 \cdot 10^2 + 67 \cdot 10^1 + 40 \cdot 10^0$. Find N . Answer:
Question 11 Not yet answered Points out of 5	Let \mathcal{R} be the region consisting of the set of points in the coordinate plane that satisfy both $ 8 - x + y \leq 10$ and $3y - x \geq 15$. When \mathcal{R} is revolved around the line whose equation is $3y - x = 15$, the volume of the resulting solid is $\frac{m\pi}{n\sqrt{p}}$, where m , n , and p are positive integers, m and n are relatively prime, and p is not divisible by the square of any prime. Find $m + n + p$.

Question 12 Not yet answered Points out of 5	Let $m \ge 3$ be an integer and let $S = \{3, 4, 5, \dots, m\}$. Find the smallest value of m such that for every partition of S into two subsets, at least one of the subsets contains integers a , b , and c (not necessarily distinct) such that $ab = c$. Note: a partition of S is a pair of sets A , B such that $A \cap B = \emptyset$, $A \cup B = S$. Answer:
Question 13 Not yet answered Points out of 5	Rectangle $ABCD$ and a semicircle with diameter AB are coplanar and have nonoverlapping interiors. Let \mathcal{R} denote the region enclosed by the semicircle and the rectangle. Line ℓ meets the semicircle, segment AB , and segment CD at distinct points N, U , and T , respectively. Line ℓ divides region \mathcal{R} into two regions with areas in the ratio 1:2. Suppose that $AU = 84$, $AN = 126$, and $UB = 168$. Then DA can be represented as $m\sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime. Find $m + n$.
Question 14 Not yet answered Points out of 5	For each positive integer n, let $f(n) = \sum_{k=1}^{100} \lfloor \log_{10}(kn) \rfloor$. Find the largest value of n for which $f(n) \leq 300$. Note: $\lfloor x \rfloor$ is the greatest integer less than or equal to x . Answer:
Question 15 Not yet answered Points out of 5	In $\triangle ABC$ with $AB = 12$, $BC = 13$, and $AC = 15$, let M be a point on \overline{AC} such that the incircles of $\triangle ABM$ and $\triangle BCM$ have equal radii. Let p and q be positive relatively prime integers such that $\frac{AM}{CM} = \frac{p}{q}$. Find $p + q$.
	Answer: