

2010 AIME I

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1

Not yet answered

Points out of 5

Maya lists all the positive divisors of 2010^{2}. She then randomly selects two distinct divisors from this list. Let p be the probability that exactly one of the selected divisors is a perfect square. The probability p can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

Find the remainder when $9 \times 99 \times 999 \times \cdots \times \underbrace{99 \cdots 9}_{999 \text { 9's }}$ is divided by 1000 .

Answer:

Suppose that $y=\frac{3}{4} x$ and $x^{y}=y^{x}$. The quantity $x+y$ can be expressed as a rational number $\frac{r}{s}$, where r and s are relatively prime positive integers. Find $r+s$.

Answer:

Jackie and Phil have two fair coins and a third coin that comes up heads with probability $\frac{4}{7}$. Jackie flips the three coins, and then Phil flips the three coins. Let $\frac{m}{n}$ be the probability that Jackie gets the same number of heads as Phil, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

Positive integers a, b, c, and d satisfy $a>b>c>d, a+b+c+d=2010$, and $a^{2}-b^{2}+c^{2}-d^{2}=2010$. Find the number of possible values of a.

Answer:

Let $P(x)$ be a quadratic polynomial with real coefficients satisfying
$x^{2}-2 x+2 \leq P(x) \leq 2 x^{2}-4 x+3$ for all real numbers x, and suppose
$P(11)=181$. Find $P(16)$.

Answer: \square

Question 7

Not yet answered
Points out of 5

Define an ordered triple (A, B, C) of sets to be minimally intersecting if $|A \cap B|=|B \cap C|=|C \cap A|=1$ and $A \cap B \cap C=\emptyset$. For example, $(\{1,2\},\{2,3\},\{1,3,4\})$ is a minimally intersecting triple. Let N be the number of minimally intersecting ordered triples of sets for which each set is a subset of $\{1,2,3,4,5,6,7\}$. Find the remainder when N is divided by 1000 .

Note: $|S|$ represents the number of elements in the set S.

Answer:

For a real number a, let $\lfloor a\rfloor$ denominate the greatest integer less than or equal to a. Let \mathcal{R} denote the region in the coordinate plane consisting of points (x, y) such that $\lfloor x\rfloor^{2}+\lfloor y\rfloor^{2}=25$. The region \mathcal{R} is completely contained in a disk of radius r (a disk is the union of a circle and its interior). The minimum value of r can be written as $\frac{\sqrt{m}}{n}$, where m and n are integers and m is not divisible by the square of any prime. Find $m+n$.

Answer:

Let (a, b, c) be the real solution of the system of equations $x^{3}-x y z=2$, $y^{3}-x y z=6, z^{3}-x y z=20$. The greatest possible value of $a^{3}+b^{3}+c^{3}$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

Let N be the number of ways to write 2010 in the form $2010=a_{3} \cdot 10^{3}+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0}$, where the a_{i} 's are integers, and $0 \leq a_{i} \leq 99$. An example of such a representation is $1 \cdot 10^{3}+3 \cdot 10^{2}+67 \cdot 10^{1}+40 \cdot 10^{0}$. Find N.

Answer:

Let \mathcal{R} be the region consisting of the set of points in the coordinate plane that satisfy both $|8-x|+y \leq 10$ and $3 y-x \geq 15$. When \mathcal{R} is revolved around the line whose equation is $3 y-x=15$, the volume of the resulting solid is $\frac{m \pi}{n \sqrt{p}}$, where m, n, and p are positive integers, m and n are relatively prime, and p is not divisible by the square of any prime.
Find $m+n+p$.

Answer:

Question 12

Not yet answered
Points out of 5

Let $m \geq 3$ be an integer and let $S=\{3,4,5, \ldots, m\}$. Find the smallest value of m such that for every partition of S into two subsets, at least one of the subsets contains integers a, b, and c (not necessarily distinct) such that $a b=c$.
Note: a partition of S is a pair of sets A, B such that $A \cap B=\emptyset, A \cup B=S$.

Answer:

\square

Rectangle $A B C D$ and a semicircle with diameter $A B$ are coplanar and have nonoverlapping interiors. Let \mathcal{R} denote the region enclosed by the semicircle and the rectangle. Line ℓ meets the semicircle, segment $A B$, and segment $C D$ at distinct points N, U, and T, respectively. Line ℓ divides region \mathcal{R} into two regions with areas in the ratio 1:2. Suppose that $A U=84, A N=126$, and $U B=168$. Then $D A$ can be represented as $m \sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime. Find $m+n$.

Answer:

For each positive integer n , let $f(n)=\sum_{k=1}^{100}\left\lfloor\log _{10}(k n)\right\rfloor$. Find the largest value of n for which $f(n) \leq 300$.

Note: $\lfloor x\rfloor$ is the greatest integer less than or equal to x.

Answer:

In $\triangle A B C$ with $A B=12, B C=13$, and $A C=15$, let M be a point on $\overline{A C}$ such that the incircles of $\triangle A B M$ and $\triangle B C M$ have equal radii. Let p and q be positive relatively prime integers such that $\frac{A M}{C M}=\frac{p}{q}$. Find $p+q$.

Answer:

\square

