

2011 AIME II

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1
Not yet answered

Points out of 5

Question 2

Not yet answered
Points out of 5

Question 3

Not yet answered
Points out of 5

Gary purchased a large beverage, but only drank m / n of it, where m and n are relatively prime positive integers. If he had purchased half as much and drunk twice as much, he would have wasted only $2 / 9$ as much beverage. Find $m+n$.

Answer:

\square

On square $A B C D$, point E lies on side $A D$ and point F lies on side $B C$, so that $B E=E F=F D=30$. Find the area of the square $A B C D$.

Answer:

The degree measures of the angles in a convex 18-sided polygon form an increasing arithmetic sequence with integer values. Find the degree measure of the smallest angle.

Answer:

In triangle $A B C, A B=\frac{20}{11} A C$. The angle bisector of $\angle A$ intersects $B C$ at point D, and point M is the midpoint of $A D$. Let P be the point of the intersection of $A C$ and $B M$. The ratio of $C P$ to $P A$ can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

The sum of the first 2011 terms of a geometric sequence is 200 . The sum of the first 4022 terms is 380 . Find the sum of the first 6033 terms.

Define an ordered quadruple of integers (a, b, c, d) as interesting if $1 \leq a<b<c<d \leq 10$, and $a+d>b+c$. How many interesting ordered quadruples are there?

Answer:

Question 6

Not yet answered
Points out of 5

Answer:

Question 7

Not yet answered
Points out of 5

Question 8

Not yet answered
Points out of 5

Question 9

Not yet answered
Points out of 5

Ed has five identical green marbles, and a large supply of identical red marbles. He arranges the green marbles and some of the red ones in a row and finds that the number of marbles whose right hand neighbor is the same color as themselves is equal to the number of marbles whose right hand neighbor is the other color. An example of such an arrangement is GGRRRGGRG. Let m be the maximum number of red marbles for which such an arrangement is possible, and let N be the number of ways he can arrange the $m+5$ marbles to satisfy the requirement. Find the remainder when N is divided by 1000 .

Answer:

Let $z_{1}, z_{2}, z_{3}, \ldots, z_{12}$ be the 12 zeroes of the polynomial $z^{12}-2^{36}$. For each j, let w_{j} be one of z_{j} or $i z_{j}$. Then the maximum possible value of the real part of $\sum_{j=1}^{12} w_{j}$ can be written as $m+\sqrt{n}$, where m and n are positive integers. Find $m+n$.

Answer:

Let $x_{1}, x_{2}, \ldots, x_{6}$ be non-negative real numbers such that $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1$, and $x_{1} x_{3} x_{5}+x_{2} x_{4} x_{6} \geq \frac{1}{540}$. Let p and q be positive relatively prime integers such that $\frac{p}{q}$ is the maximum possible value of $x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+x_{3} x_{4} x_{5}+x_{4} x_{5} x_{6}+x_{5} x_{6} x_{1}+x_{6} x_{1} x_{2}$. Find $p+q$.

Answer:

A circle with center O has radius 25 . Chord $\overline{A B}$ of length 30 and chord $\overline{C D}$ of length 14 intersect at point P. The distance between the midpoints of the two chords is 12 . The quantity $O P^{2}$ can be represented as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find the remainder when $m+n$ is divided by 1000 .

Answer: \square

Question 11

Not yet answered
Points out of 5

Question 12
Not yet answered

Points out of 5

Let M_{n} be the $n \times n$ matrix with entries as follows: for $1 \leq i \leq n, m_{i, i}=10$; for $1 \leq i \leq n-1, m_{i+1, i}=m_{i, i+1}=3$; all other entries in M_{n} are zero. Let D_{n} be the determinant of matrix M_{n}. Then $\sum_{n=1}^{\infty} \frac{1}{8 D_{n}+1}$ can be represented as $\frac{p}{q}$, where p and q are relatively prime positive integers. Find $p+q$.
Note: The determinant of the 1×1 matrix $[a]$ is a, and the determinant of the 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$; for $n \geq 2$, the determinant of an $n \times n$ matrix with first row or first column $a_{1} a_{2} a_{3} \ldots a_{n}$ is equal to $a_{1} C_{1}-a_{2} C_{2}+a_{3} C_{3}-\cdots+(-1)^{n+1} a_{n} C_{n}$, where C_{i} is the determinant of the $(n-1) \times(n-1)$ matrix formed by eliminating the row and column containing a_{i}.

Answer:

Nine delegates, three each from three different countries, randomly select chairs at a round table that seats nine people. Let the probability that each delegate sits next to at least one delegate from another country be $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

Point P lies on the diagonal $A C$ of square $A B C D$ with $A P>C P$. Let O_{1} and O_{2} be the circumcenters of triangles $A B P$ and $C D P$ respectively. Given that $A B=12$ and $\angle O_{1} P O_{2}=120^{\circ}$, then $A P=\sqrt{a}+\sqrt{b}$, where a and b are positive integers. Find $a+b$.

Answer:

There are N permutations $\left(a_{1}, a_{2}, \ldots, a_{30}\right)$ of $1,2, \ldots, 30$ such that for $m \in\{2,3,5\}$, m divides $a_{n+m}-a_{n}$ for all integers n with $1 \leq n<n+m \leq 30$. Find the remainder when N is divided by 1000 .

Answer:

\square

Question 15
Not yet answered
Points out of 5

Let $P(x)=x^{2}-3 x-9$. A real number x is chosen at random from the interval $5 \leq x \leq 15$. The probability that $\lfloor\sqrt{P(x)}\rfloor=\sqrt{P(\lfloor x\rfloor)}$ is equal to $\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-d}{e}$, where a, b, c, d, and e are positive integers. Find $a+b+c+d+e$.

Answer:

