

2015 AIME II

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1 Not yet answered Points out of 5	Let N be the least positive integer that is both 22 percent less than one integer and 16 percent greater than another integer. Find the remainder when N is divided by 1000 . Answer:
Question 2 Not yet answered Points out of 5	In a new school 40 percent of the students are freshmen, 30 percent are sophomores, 20 percent are juniors, and 10 percent are seniors. All freshmen are required to take Latin, and 80 percent of the sophomores, 50 percent of the juniors, and 20 percent of the seniors elect to take Latin. The probability that a randomly chosen Latin student is a sophomore is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
Question 3 Not yet answered Points out of 5	Let m be the least positive integer divisible by 17 whose digits sum to 17 . Find m .
Question 4 Not yet answered Points out of 5	In an isosceles trapezoid, the parallel bases have lengths $\log 3$ and $\log 192$, and the altitude to these bases has length $\log 16$. The perimeter of the trapezoid can be written in the form $\log 2^p 3^q$, where p and q are positive integers. Find $p+q$.
Question 5 Not yet answered Points out of 5	Two unit squares are selected at random without replacement from an $n \times n$ grid of unit squares. Find the least positive integer n such that the probability that the two selected unit squares are horizontally or vertically adjacent is less than $\frac{1}{2015}$.

Question 6 Not yet answered Points out of 5	Steve says to Jon, "I am thinking of a polynomial whose roots are all positive integers. The polynomial has the form $P(x)=2x^3-2ax^2+(a^2-81)x-c$ for some positive integers a and c . Can you tell me the values of a and c ?"
	After some calculations, Jon says, "There is more than one such polynomial."
	Steve says, "You're right. Here is the value of a ." He writes down a positive integer and

Jon says, "There are still two possible values of c."

Find the sum of the two possible values of c.

Answer:	
---------	--

asks, "Can you tell me the value of c?"

Question 7

Not yet answered

Points out of 5

Triangle ABC has side lengths AB=12, BC=25, and CA=17. Rectangle PQRS has vertex P on \overline{AB} , vertex Q on \overline{AC} , and vertices R and S on \overline{BC} . In terms of the side length PQ=w, the area of PQRS can be expressed as the quadratic polynomial $\operatorname{Area}(PQRS)=\alpha w-\beta\cdot w^2.$

Then the coefficient $\beta=\frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n.

Answer:	
---------	--

Question 8

Not yet answered

Points out of 5

Let a and b be positive integers satisfying $\frac{ab+1}{a+b}<\frac{3}{2}$. The maximum possible value of $\frac{a^3b^3+1}{a^3+b^3}$ is $\frac{p}{q}$, where p and q are relatively prime positive integers. Find p+q.

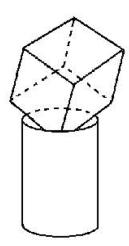
Answer:	
---------	--

Question 9

Not yet answered

Points out of 5

A cylindrical barrel with radius 4 feet and height 10 feet is full of water. A solid cube with side length 8 feet is set into the barrel so that the diagonal of the cube is vertical. The volume of water thus displaced is v cubic feet. Find v^2 .



_				
Λ	ns	14/	٥r	•
$\overline{}$	шъ	• •	CI.	

Question 10

Not yet answered

Points out of 5

Call a permutation a_1,a_2,\ldots,a_n of the integers $1,2,\ldots,n$ quasi-increasing if $a_k \leq a_{k+1}+2$ for each $1 \leq k \leq n-1$. For example, 53421 and 14253 are quasi-increasing permutations of the integers 1,2,3,4,5, but 45123 is not. Find the number of quasi-increasing permutations of the integers $1,2,\ldots,7$.

Answer:	
---------	--

Question 11

Not yet answered

Points out of 5

The circumcircle of acute $\triangle ABC$ has center O. The line passing through point O perpendicular to \overline{OB} intersects lines AB and BC at P and Q, respectively. Also AB=5, BC=4, BQ=4.5, and $BP=\frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n.

Answer:	
---------	--

Question 12

Not yet answered

Points out of 5

There are $2^{10}=1024$ possible 10-letter strings in which each letter is either an A or a B. Find the number of such strings that do not have more than 3 adjacent letters that are identical.

Answer:	
---------	--

Question 13

Not yet answered

Points out of 5

Define the sequence a_1,a_2,a_3,\ldots by $a_n=\sum\limits_{k=1}^n\sin k$, where k represents radian measure. Find the index of the 100th term for which $a_n<0$.

Answer:	
---------	--

Question 14

Not yet answered

Points out of 5

Let x and y be real numbers satisfying $x^4y^5+y^4x^5=810$ and $x^3y^6+y^3x^6=945$. Evaluate $2x^3+(xy)^3+2y^3$.

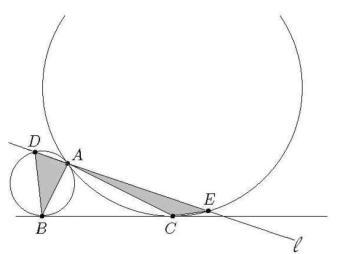
Answer:	
---------	--

Question 15

Not yet answered

Points out of 5

Circles $\mathcal P$ and $\mathcal Q$ have radii 1 and 4, respectively, and are externally tangent at point A. Point B is on $\mathcal P$ and point C is on $\mathcal Q$ such that BC is a common external tangent of the two circles. A line ℓ through A intersects $\mathcal P$ again at D and intersects $\mathcal Q$ again at E. Points B and C lie on the same side of ℓ , and the areas of $\triangle DBA$ and $\triangle ACE$ are equal. This common area is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n.



Answer:	
---------	--