

2018 AIME II

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1
Not yet answered

Points out of 1

Points A, B, and C lie in that order along a straight path where the distance from A to C is 1800 meters. Ina runs twice as fast as Eve, and Paul runs twice as fast as Ina. The three runners start running at the same time with Ina starting at A and running toward C, Paul starting at B and running toward C, and Eve starting at C and running toward A. When Paul meets Eve, he turns around and runs toward A. Paul and Ina both arrive at B at the same time. Find the number of meters from A to B.

Answer:

Let $a_{0}=2, a_{1}=5$, and $a_{2}=8$, and for $n>2$ define a_{n} recursively to be the remainder when $4\left(a_{n-1}+a_{n-2}+a_{n-3}\right)$ is divided by 11 . Find $a_{2018} \cdot a_{2020} \cdot a_{2022}$.

Answer:

Find the sum of all positive integers $b<1000$ such that the base- b integer 36_{b} is a perfect square and the base- b integer 27_{b} is a perfect cube.

Answer:

In equiangular octagon $C A R O L I N E, C A=R O=L I=N E=\sqrt{2}$ and $A R=O L=I N=E C=1$. The self-intersecting octagon $C O R N E L I A$ encloses six non-overlapping triangular regions. Let K be the area enclosed by $C O R N E L I A$, that is, the total area of the six triangular regions. Then $K=\frac{a}{b}$, where a and b are relatively prime positive integers. Find $a+b$.

Answer:

Suppose that x, y, and z are complex numbers such that $x y=-80-320 i, y z=60$, and $z x=-96+24 i$, where $i=\sqrt{-1}$. Then there are real numbers a and b such that $x+y+z=a+b i$. Find $a^{2}+b^{2}$.

Answer:

\square

Question 6

Not yet answered
Points out of 1

Question 7

Not yet answered
Points out of 1

Question 8

Not yet answered
Points out of 1

A real number a is chosen randomly and uniformly from the interval $[-20,18]$. The probability that the roots of the polynomial

$$
x^{4}+2 a x^{3}+(2 a-2) x^{2}+(-4 a+3) x-2
$$

are all real can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

Triangle $A B C$ has side lengths $A B=9, B C=5 \sqrt{3}$, and $A C=12$. Points $A=P_{0}, P_{1}, P_{2}, \ldots, P_{2450}=B$ are on segment $\overline{A B}$ with P_{k} between P_{k-1} and P_{k+1} for $k=1,2, \ldots, 2449$, and points $A=Q_{0}, Q_{1}, Q_{2}, \ldots, Q_{2450}=C$ are on segment $\overline{A C}$ with Q_{k} between Q_{k-1} and Q_{k+1} for $k=1,2, \ldots, 2449$. Furthermore, each segment $\overline{P_{k} Q_{k}}, k=1,2, \ldots, 2449$, is parallel to $\overline{B C}$. The segments cut the triangle into 2450 regions, consisting of 2449 trapezoids and 1 triangle. Each of the 2450 regions has the same area. Find the number of segments $\overline{P_{k} Q_{k}}, k=1,2, \ldots, 2450$, that have rational length.

Answer:

A frog is positioned at the origin of the coordinate plane. From the point (x, y), the frog can jump to any of the points $(x+1, y),(x+2, y),(x, y+1)$, or $(x, y+2)$. Find the number of distinct sequences of jumps in which the frog begins at $(0,0)$ and ends at $(4,4)$.

Answer: \square

Question 9

Not yet answered

Points out of 1

Question 10

Not yet answered
Points out of 1

Octagon $A B C D E F G H$ with side lengths $A B=C D=E F=G H=10$ and $B C=D E=F G=H A=11$ is formed by removing 6-8-10 triangles from the corners of a 23×27 rectangle with side $\overline{A H}$ on a short side of the rectangle, as shown.

Let J be the midpoint of $\overline{A H}$, and partition the octagon into 7 triangles by drawing segments $\overline{J B}, \overline{J C}, \overline{J D}, \overline{J E}, \overline{J F}$, and $\overline{J G}$. Find the area of the convex polygon whose vertices are the centroids of these 7 triangles.

Answer:

\square

Find the number of functions $f(x)$ from $\{1,2,3,4,5\}$ to $\{1,2,3,4,5\}$ that satisfy $f(f(x))=f(f(f(x)))$ for all x in $\{1,2,3,4,5\}$.

Answer:

Find the number of permutations of $1,2,3,4,5,6$ such that for each k with $1 \leq k \leq 5$, at least one of the first k terms of the permutation is greater than k.

Answer:

Let $A B C D$ be a convex quadrilateral with $A B=C D=10, B C=14$, and $A D=2 \sqrt{65}$. Assume that the diagonals of $A B C D$ intersect at point P, and that the sum of the areas of triangles $A P B$ and $C P D$ equals the sum of the areas of triangles $B P C$ and $A P D$. Find the area of quadrilateral $A B C D$.

Answer: \square

Question 13

Not yet answered
Points out of 1

Question 14

Not yet answered
Points out of 1

Question 15

Not yet answered
Points out of 1

Misha rolls a standard, fair six-sided die until she rolls 1-2-3 in that order on three consecutive rolls. The probability that she will roll the die an odd number of times is $\frac{m}{n}$ where m and n are relatively prime positive integers. Find $m+n$.

Answer: \square

The incircle ω of triangle $A B C$ is tangent to $\overline{B C}$ at X. Let $Y \neq X$ be the other intersection of $\overline{A X}$ with ω. Points P and Q lie on $\overline{A B}$ and $\overline{A C}$, respectively, so that $\overline{P Q}$ is tangent to ω at Y. Assume that $A P=3, P B=4, A C=8$, and $A Q=\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

Find the number of functions f from $\{0,1,2,3,4,5,6\}$ to the integers such that $f(0)=0, f(6)=12$, and

$$
|x-y| \leq|f(x)-f(y)| \leq 3|x-y|
$$

for all x and y in $\{0,1,2,3,4,5,6\}$.

Answer: \square

