

2018 AIME II

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Not yet answered

Points out of 1

Points A, B, and C lie in that order along a straight path where the distance from A to C is 1800 meters. Ina runs twice as fast as Eve, and Paul runs twice as fast as Ina. The three runners start running at the same time with Ina starting at A and running toward C, Paul starting at B and running toward C, and Eve starting at C and running toward A. When Paul meets Eve, he turns around and runs toward A. Paul and Ina both arrive at B at the same time. Find the number of meters from A to B.

Answer:

Question 2 Not yet answered Points out of 1	Let $a_0 = 2$, $a_1 = 5$, and $a_2 = 8$, and for $n > 2$ define a_n recursively to be the remainder when $4(a_{n-1} + a_{n-2} + a_{n-3})$ is divided by 11. Find $a_{2018} \cdot a_{2020} \cdot a_{2022}$. Answer:
Question 3 Not yet answered Points out of 1	Find the sum of all positive integers $b < 1000$ such that the base- b integer 36_b is a perfect square and the base- b integer 27_b is a perfect cube.
Question 4 Not yet answered Points out of 1	In equiangular octagon $CAROLINE$, $CA = RO = LI = NE = \sqrt{2}$ and $AR = OL = IN = EC = 1$. The self-intersecting octagon $CORNELIA$ encloses six non-overlapping triangular regions. Let K be the area enclosed by $CORNELIA$, that is, the total area of the six triangular regions. Then $K = \frac{a}{b}$, where a and b are relatively prime positive integers. Find $a + b$.
Question 5 Not yet answered Points out of 1	Suppose that x , y , and z are complex numbers such that $xy = -80 - 320i$, $yz = 60$, and $zx = -96 + 24i$, where $i = \sqrt{-1}$. Then there are real numbers a and b such that $x + y + z = a + bi$. Find $a^2 + b^2$. Answer:

_	
Question 6	A real number a is chosen randomly and uniformly from the interval $[-20, 18]$. The
Not yet answered	probability that the roots of the polynomial
Points out of 1	$x^4+2ax^3+(2a-2)x^2+(-4a+3)x-2\\$
	are all real can be written in the form $\displaystyle rac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n.$
	Answer:
Question 7	Triangle ABC has side law the $AB = 0$ $BC = 5\sqrt{2}$ and $AC = 10$ Deints
Not yet answered	Triangle ABC has side lengths $AB = 9$, $BC = 5\sqrt{3}$, and $AC = 12$. Points A = P + R + R + R + R + R + R + R + R + R +
	$A = F_0, F_1, F_2, \dots, F_{2450} = D$ are on segment AD with F_k between F_{k-1} and F_{k+1} for $k = 1, 2, \dots, 2449$, and points $A = Q_0, Q_1, Q_2, \dots, Q_{2450} = C$ are on segment
Points out of 1	\overline{AC} with Q_k between Q_{k-1} and Q_{k+1} for $k = 1, 2, \dots, 2449$. Furthermore, each
	segment $\overline{P_kQ_k}$, $k=1,2,\ldots,2449$, is parallel to \overline{BC} . The segments cut the triangle into
	2450 regions, consisting of 2449 trapezoids and 1 triangle. Each of the 2450 regions has
	the same area. Find the number of segments $\overline{P_k Q_k}$, $k=1,2,\ldots,2450$, that have rational length.
	Answer:
Question 8	A frog is positioned at the origin of the coordinate plane. From the point (x, y) , the frog can
Not yet answered	jump to any of the points $(x + 1, y)$, $(x + 2, y)$, $(x, y + 1)$, or $(x, y + 2)$. Find the number of distinct sequences of jumps in which the freq begins at $(0, 0)$ and ends at
Points out of 1	(4,4).
	Answer:

Question	9
----------	---

Not yet answered

Points out of 1

Octagon ABCDEFGH with side lengths AB = CD = EF = GH = 10 and BC = DE = FG = HA = 11 is formed by removing 6-8-10 triangles from the corners of a 23×27 rectangle with side \overline{AH} on a short side of the rectangle, as shown.

Let J be the midpoint of AH , and partition the octagon into 7 triangles by drawing		
segments \overline{JB} , \overline{JC} , \overline{JD} , \overline{JE} , \overline{JF} , and \overline{JG} . Find the area of the convex polygon whose		
vertices are the centroids of these 7 triangles.		

Answer:

Question 10 Not yet answered Points out of 1	Find the number of functions $f(x)$ from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$ that satisfy $f(f(x)) = f(f(f(x)))$ for all x in $\{1, 2, 3, 4, 5\}$. Answer:
Question 11 Not yet answered Points out of 1	Find the number of permutations of $1, 2, 3, 4, 5, 6$ such that for each k with $1 \le k \le 5$, at least one of the first k terms of the permutation is greater than k . Answer:
Question 12 Not yet answered Points out of 1	Let $ABCD$ be a convex quadrilateral with $AB = CD = 10$, $BC = 14$, and $AD = 2\sqrt{65}$. Assume that the diagonals of $ABCD$ intersect at point P , and that the sum of the areas of triangles APB and CPD equals the sum of the areas of triangles BPC and APD . Find the area of quadrilateral $ABCD$. Answer:

Question 13 Not yet answered Points out of 1	Misha rolls a standard, fair six-sided die until she rolls 1-2-3 in that order on three consecutive rolls. The probability that she will roll the die an odd number of times is $\frac{m}{n}$ where m and n are relatively prime positive integers. Find $m + n$.
Question 14 Not yet answered Points out of 1	The incircle ω of triangle ABC is tangent to \overline{BC} at X . Let $Y \neq X$ be the other intersection of \overline{AX} with ω . Points P and Q lie on \overline{AB} and \overline{AC} , respectively, so that \overline{PQ} is tangent to ω at Y . Assume that $AP = 3$, $PB = 4$, $AC = 8$, and $AQ = \frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$. Answer:
Question 15 Not yet answered Points out of 1	Find the number of functions f from $\{0, 1, 2, 3, 4, 5, 6\}$ to the integers such that $f(0) = 0, f(6) = 12$, and $ x - y \le f(x) - f(y) \le 3 x - y $ for all x and y in $\{0, 1, 2, 3, 4, 5, 6\}$. Answer: