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Question 1
Not yet answered

Points out of 1

Question 2
Not yet answered

Points out of 1

Question 3
Not yet answered

Points out of 1

Question 4
Not yet answered

Points out of 1

Two different points,  and , lie on the same side of line  so that  and 
 are congruent with , , and . The

intersection of these two triangular regions has area , where  and  are relatively

prime positive integers. Find .

Answer:

Lily pads  lie in a row on a pond. A frog makes a sequence of jumps starting on
pad . From any pad  the frog jumps to either pad  or pad  chosen randomly

with probability  and independently of other jumps. The probability that the frog visits pad 

 is , where  and  are relatively prime positive integers. Find .

Answer:

Find the number of -tuples of positive integers  that satisfy the following
systems of equations:

Answer:

A standard six-sided fair die is rolled four times. The probability that the product of all four

numbers rolled is a perfect square is , where  and  are relatively prime positive

integers. Find .

Answer:
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Question 5
Not yet answered

Points out of 1

Question 6
Not yet answered

Points out of 1

Question 7
Not yet answered

Points out of 1

Question 8
Not yet answered

Points out of 1

Question 9
Not yet answered

Points out of 1

Four ambassadors and one advisor for each of them are to be seated at a round table with 
 chairs numbered in order  to . Each ambassador must sit in an even-numbered

chair. Each advisor must sit in a chair adjacent to his or her ambassador. There are  ways
for the  people to be seated at the table under these conditions. Find the remainder when 

 is divided by .

Answer:

In a Martian civilization, all logarithms whose bases are not specified as assumed to be
base , for some fixed . A Martian student writes down

and finds that this system of equations has a single real number solution . Find .

Answer:

Triangle  has side lengths , , and . Lines  , ,

and  are drawn parallel to , , and , respectively, such that the intersections
of , , and  with the interior of  are segments of lengths , , and ,
respectively. Find the perimeter of the triangle whose sides lie on lines , , and .

Answer:

The polynomial  has real coefficients not exceeding 

, and . Find the remainder when  is divided

by .

Answer:

Call a positive integer  -pretty if  has exactly  positive divisors and  is divisible by .
For example,  is -pretty. Let  be the sum of positive integers less than  that are 

-pretty. Find .

Answer:
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Question 10
Not yet answered

Points out of 1

Question 11
Not yet answered

Points out of 1

Question 12
Not yet answered

Points out of 1

Question 13
Not yet answered

Points out of 1

Question 14
Not yet answered

Points out of 1

There is a unique angle  between  and  such that for nonnegative integers , the
value of  is positive when  is a multiple of , and negative otherwise. The

degree measure of  is , where  and  are relatively prime integers. Find .

Answer:

Triangle  has side lengths , , and . Circle  passes
through  and is tangent to line  at . Circle  passes through  and is tangent to
line  at . Let  be the intersection of circles  and  not equal to  Then 

, where  and  are relatively prime positive integers. Find .

Answer:

For  call a finite sequence  of positive integers progressive if 
 and  divides  for all . Find the number of progressive

sequences such that the sum of the terms in the sequence is equal to .

Answer:

Regular octagon  is inscribed in a circle of area  Point  lies

inside the circle so that the region bounded by , , and the minor arc  of the

circle has area , while the region bounded by , , and the minor arc  of

the circle has area . There is a positive integer  such that the area of the region

bounded by , , and the minor arc  of the circle is equal to . Find 

.

Answer:

Find the sum of all positive integers  such that, given an unlimited supply of stamps of
denominations , , and  cents,  cents is the greatest postage that cannot be
formed.

Answer:
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Question 15
Not yet answered

Points out of 1

In acute triangle  points  and  are the feet of the perpendiculars from  to 

and from  to , respectively. Line  intersects the circumcircle of  in two
distinct points,  and . Suppose , , and . The value of 

 can be written in the form  where  and  are positive integers, and  is
not divisible by the square of any prime. Find .

Answer:
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