

2019 AIME II

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1
Not yet answered
Points out of 1

Question 2

Not yet answered
Points out of 1

Question 3

Not yet answered
Points out of 1

Question 4

Not yet answered
Points out of 1

Two different points, C and D, lie on the same side of line $A B$ so that $\triangle A B C$ and $\triangle B A D$ are congruent with $A B=9, B C=A D=10$, and $C A=D B=17$. The intersection of these two triangular regions has area $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

Lily pads $1,2,3, \ldots$ lie in a row on a pond. A frog makes a sequence of jumps starting on pad 1 . From any pad k the frog jumps to either pad $k+1$ or pad $k+2$ chosen randomly with probability $\frac{1}{2}$ and independently of other jumps. The probability that the frog visits pad 7 is $\frac{p}{q}$, where p and q are relatively prime positive integers. Find $p+q$.

Answer:

\square

Find the number of 7 -tuples of positive integers (a, b, c, d, e, f, g) that satisfy the following systems of equations:

$$
\begin{aligned}
a b c & =70 \\
c d e & =71 \\
e f g & =72
\end{aligned}
$$

Answer: \square

A standard six-sided fair die is rolled four times. The probability that the product of all four numbers rolled is a perfect square is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer: \square

Question 5

Not yet answered
Points out of 1

Question 6

Not yet answered
Points out of 1

Question 7

Not yet answered
Points out of 1

Four ambassadors and one advisor for each of them are to be seated at a round table with 12 chairs numbered in order 1 to 12 . Each ambassador must sit in an even-numbered chair. Each advisor must sit in a chair adjacent to his or her ambassador. There are N ways for the 8 people to be seated at the table under these conditions. Find the remainder when N is divided by 1000 .

Answer:

In a Martian civilization, all logarithms whose bases are not specified as assumed to be base b, for some fixed $b \geq 2$. A Martian student writes down

$$
\begin{aligned}
3 \log (\sqrt{x} \log x) & =56 \\
\log _{\log x}(x) & =54
\end{aligned}
$$

and finds that this system of equations has a single real number solution $x>1$. Find b.

Answer:

Triangle $A B C$ has side lengths $A B=120, B C=220$, and $A C=180$. Lines ℓ_{A}, ℓ_{B}, and ℓ_{C} are drawn parallel to $\overline{B C}, \overline{A C}$, and $\overline{A B}$, respectively, such that the intersections of ℓ_{A}, ℓ_{B}, and ℓ_{C} with the interior of $\triangle A B C$ are segments of lengths 55,45 , and 15 , respectively. Find the perimeter of the triangle whose sides lie on lines ℓ_{A}, ℓ_{B}, and ℓ_{C}.

Answer:

The polynomial $f(z)=a z^{2018}+b z^{2017}+c z^{2016}$ has real coefficients not exceeding 2019 , and $f\left(\frac{1+\sqrt{3} i}{2}\right)=2015+2019 \sqrt{3} i$. Find the remainder when $f(1)$ is divided by 1000 .

Answer: \square

Call a positive integer $n k$-pretty if n has exactly k positive divisors and n is divisible by k. For example, 18 is 6 -pretty. Let S be the sum of positive integers less than 2019 that are 20 -pretty. Find $\frac{S}{20}$.

Answer: \square

Question 10

Not yet answered
Points out of 1
There is a unique angle θ between 0° and 90° such that for nonnegative integers n, the value of $\tan \left(2^{n} \theta\right)$ is positive when n is a multiple of 3 , and negative otherwise. The degree measure of θ is $\frac{p}{q}$, where p and q are relatively prime integers. Find $p+q$.

Answer:

Triangle $A B C$ has side lengths $A B=7, B C=8$, and $C A=9$. Circle ω_{1} passes through B and is tangent to line $A C$ at A. Circle ω_{2} passes through C and is tangent to line $A B$ at A. Let K be the intersection of circles ω_{1} and ω_{2} not equal to A. Then $A K=\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer:

For $n \geq 1$ call a finite sequence $\left(a_{1}, a_{2} \ldots, a_{n}\right)$ of positive integers progressive if $a_{i}<a_{i+1}$ and a_{i} divides a_{i+1} for all $1 \leq i \leq n-1$. Find the number of progressive sequences such that the sum of the terms in the sequence is equal to 360 .

Answer:

Regular octagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7} A_{8}$ is inscribed in a circle of area 1. Point P lies inside the circle so that the region bounded by $\overline{P A_{1}}, \overline{P A_{2}}$, and the minor arc $\widehat{A_{1} A_{2}}$ of the circle has area $\frac{1}{7}$, while the region bounded by $\overline{P A_{3}}, \overline{P A_{4}}$, and the minor arc $\widehat{A_{3} A_{4}}$ of the circle has area $\frac{1}{9}$. There is a positive integer n such that the area of the region bounded by $\overline{P A_{6}}, \overline{P A_{7}}$, and the minor arc $\widehat{A_{6} A_{7}}$ of the circle is equal to $\frac{1}{8}-\frac{\sqrt{2}}{n}$. Find n.

Answer:

Find the sum of all positive integers n such that, given an unlimited supply of stamps of denominations $5, n$, and $n+1$ cents, 91 cents is the greatest postage that cannot be formed.

Answer: \square

Question 15
Not yet answered
Points out of 1

In acute triangle $\triangle A B C$ points P and Q are the feet of the perpendiculars from C to $\overline{A B}$ and from B to $\overline{A C}$, respectively. Line $P Q$ intersects the circumcircle of $\triangle A B C$ in two distinct points, X and Y. Suppose $X P=10, P Q=25$, and $Q Y=15$. The value of $A B \cdot A C$ can be written in the form $m \sqrt{n}$ where m and n are positive integers, and n is not divisible by the square of any prime. Find $m+n$.

Answer:

