

2022 AMC 10A

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1
Not yet answered
Marked out of 6
What is the value of
(A) $\frac{31}{10}$
(B) $\frac{49}{15}$
(C) $\frac{33}{10}$
(D) $\frac{109}{33}$
(E) $\frac{15}{4}$
Select one:ACDELeave blank (1.5 points)

Question 2
Not yet answered
Marked out of 6

Mike cycled 15 laps in 57 minutes. Assume he cycled at a constant speed throughout. Approximately how many laps did he complete in the first 27 minutes?
(A) 5
(B) 7
(C) 9
(D) 11
(E) 13

Select one:ALeave blank (1.5 points)

Question 3

Not yet answered

Marked out of 6 ad

The sum of three numbers is 96 . The first number is 6 times the third number, and the third number is 40 less than the second number. What is the absolute value of the difference between the first and second numbers?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Select one:
\bigcirc ACDELeave blank (1.5 points)

Question 4

Not yet answered
Marked out of 6

In some countries, automobile fuel efficiency is measured in liters per 100 kilometers while other countries use miles per gallon. Suppose that 1 kilometer equals m miles, and 1 gallon equals l liters. Which of the following gives the fuel efficiency in liters per 100 kilometers for a car that gets x miles per gallon?
(A) $\frac{x}{100 l m}$
(B) $\frac{x l m}{100}$
(C) $\frac{l m}{100 x}$
(D) $\frac{100}{x l m}$
(E) $\frac{100 l m}{x}$

Select one:

ABCDELeave blank (1.5 points)

Question 5
Not yet answered
Marked out of 6 Marked out of 6
(A) $\frac{\sqrt{2}}{3}$
(B) $\frac{1}{2}$
(C) $2-\sqrt{2}$
(D) $1-\frac{\sqrt{2}}{4}$
(E) $\frac{2}{3}$

Select one:
$\bigcirc \mathbf{A}$CDELeave blank (1.5 points)

Which expression is equal to

$$
\left|a-2-\sqrt{(a-1)^{2}}\right|
$$

for $a<0$?
(A) $3-2 a$
(B) $1-a$
(C) 1
(D) $a+1$
(E) 3

Select one:BCDLeave blank (1.5 points)

Question 7
Not yet answered
Marked out of 6

Question 8
Not yet answered

Marked out of 6
(A) 3
(B) 6
(C) 8
(D) 9
(E) 12

Select one:ABDELeave blank (1.5 points)
The least common multiple of a positive divisor n and 18 is 180 , and the greatest common divisor of n and 45 is 15 . What is the sum of the digits of n ?

A

C

A data set consists of 6 (not distinct) positive integers: $1,7,5,2,5$, and X. The average (arithmetic mean) of the 6 numbers equals a value in the data set. What is the sum of all positive values of X ?
(A) 10
(B) 26
(C) 32
(D) 36
(E) 40

Select one:ABE
Leave blank (1.5 points)

Question 9
Not yet answered
Marked out of 6

A rectangle is partitioned into 5 regions as shown. Each region is to be painted a solid color - red, orange, yellow, blue, or green - so that regions that touch are painted different colors, and colors can be used more than once. How many different colorings are possible?

(A) 120
(B) 270
(C) 360
(D) 540
(E) 720

Select one:
$\bigcirc \mathbf{A}$BCDELeave blank (1.5 points)

Question 10
Not yet answered
Marked out of 6

Daniel finds a rectangular index card and measures its diagonal to be 8 centimeters. Daniel then cuts out equal squares of side 1 cm at two opposite corners of the index card and measures the distance between the two closest vertices of these squares to be centimeters, as shown below. What is the area of the original index card?

(A) 14
(B) $10 \sqrt{2}$
(C) 16
(D) $12 \sqrt{2}$
(E) 18

Select one:ABCDELeave blank (1.5 points)

Question 11

Not yet answered
Marked out of 6

Ted mistakenly wrote $2^{m} \cdot \sqrt{\frac{1}{4096}}$ as $2 \cdot \sqrt[m]{\frac{1}{4096}}$. What is the sum of all real numbers m for which these two expressions have the same value?
(A) 5
(B) 6
(C) 7
(D) 8
(E) 9

Select one:ABCDLeave blank (1.5 points)

Question 12

Not yet answered
Marked out of 6

On Halloween 31 children walked into the principal's office asking for candy. They can be classified into three types: Some always lie; some always tell the truth; and some alternately lie and tell the truth. The alternaters arbitrarily choose their first response, either a lie or the truth, but each subsequent statement has the opposite truth value from its predecessor. The principal asked everyone the same three questions in this order.
"Are you a truth-teller?" The principal gave a piece of candy to each of the 22 children who answered yes.
"Are you an alternater?" The principal gave a piece of candy to each of the 15 children who answered yes.
"Are you a liar?" The principal gave a piece of candy to each of the 9 children who answered yes.

How many pieces of candy in all did the principal give to the children who always tell the truth?
(A) 7
(B) 12
(C) 21
(D) 27
(E) 31

Select one:

Leave blank (1.5 points)
Question 13

Not yet answered
Marked out of 6

Let $\triangle A B C$ be a scalene triangle. Point P lies on $\overline{B C}$ so that $\overline{A P}$ bisects $\angle B A C$. The line through B perpendicular to $\overline{A P}$ intersects the line through A parallel to $\overline{B C}$ at point D. Suppose $B P=2$ and $P C=3$. What is $A D$?
(A) 8
(B) 9
(C) 10
(D) 11
(E) 12

Select one:

$\bigcirc \mathbf{A}$CLeave blank (1.5 points)

Question 14
Not yet answered
Marked out of 6
Markd out of

Question 15
Not yet answered

Marked out of 6

Select one:ABCDELeave blank (1.5 points)
How many ways are there to split the integers 1 through 14 into 7 pairs such that in each pair, the greater number is at least 2 times the lesser number?
(A) 108
(B) 120
(C) 126
(D) 132
(E) 144
D

Quadrilateral $A B C D$ with side lengths $A B=7, B C=24, C D=20, D A=15$ is inscribed in a circle. The area interior to the circle but exterior to the quadrilateral can be written in the form $\frac{a \pi-b}{c}$, where a, b, and c are positive integers such that a and c have no common prime factor. What is $a+b+c$?
(A) 260
(B) 855
(C) 1235
(D) 1565
(E) 1997

Select one:

ABCDELeave blank (1.5 points)

Question 16

Not yet answered
Marked out of 6

Question 17

Not yet answered
Marked out of 6
(A) $\frac{24}{5}$
(B) $\frac{42}{5}$
(C) $\frac{81}{5}$
(D) 30
(E) 48

Select one:
 Select one:

CDEThe roots of the polynomial $10 x^{3}-39 x^{2}+29 x-6$ are the height, length, and width of a rectangular box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the original box by 2 units. What is the volume of the new box?
$\bigcirc \mathbf{A}$
B
\qquad

```
Leave blank (1.5 points)
```


Question 18

Not yet answered
Marked out of 6

Let T_{k} be the transformation of the coordinate plane that first rotates the plane k degrees counterclockwise around the origin and then reflects the plane across the y-axis. What is the least positive integer n such that performing the sequence of transformations $T_{1}, T_{2}, T_{3}, \cdots, T_{n}$ returns the point $(1,0)$ back to itself?
(A) 359
(B) 360
(C) 719
(D) 720
(E) 721

Select one:

$\bigcirc \mathbf{A}$
$\bigcirc \mathrm{B}$
$\bigcirc \mathbf{C}$DLeave blank (1.5 points)

Question 19

Not yet answered
Marked out of 6

Define L_{n} as the least common multiple of all the integers from 1 to n inclusive. There is a unique integer h such that

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3} \ldots+\frac{1}{17}=\frac{h}{L_{17}}
$$

What is the remainder when h is divided by 17 ?
(A) 1
(B) 3
(C) 5
(D) 7
(E) 9

Select one:

CDELeave blank (1.5 points)
Question 20

Not yet answered
Marked out of 6

A four-term sequence is formed by adding each term of a four-term arithmetic sequence of positive integers to the corresponding term of a four-term geometric sequence of positive integers. The first three terms of the resulting four-term sequence are 57,60 , and 91 . What is the fourth term of this sequence?
(A) 190
(B) 194
(C) 198
(D) 202
(E) 206

Select one:

ABDELeave blank (1.5 points)
Question 21

Not yet answered
Marked out of 6

A bowl is formed by attaching four regular hexagons of side 1 to a square of side 1 . The edges of the adjacent hexagons coincide, as shown in the figure. What is the area of the octagon obtained by joining the top eight vertices of the four hexagons, situated on the rim of the bowl?

(A) 6
(B) 7
(C) $5+2 \sqrt{2}$
(D) 8
(E) 9

Select one:
$\bigcirc \mathbf{A}$CDELeave blank (1.5 points)

Question 22

Not yet answered
Marked out of 6

Suppose that 13 cards numbered $1,2,3, \ldots, 13$ are arranged in a row. The task is to pick them up in numerically increasing order, working repeatedly from left to right. In the example below, cards $1,2,3$ are picked up on the first pass, 4 and 5 on the second pass, 6 on the third pass, $7,8,9,10$ on the fourth pass, and $11,12,13$ on the fifth pass. For how many of the 13 ! possible orderings of the cards will the 13 cards be picked up in exactly two passes?

(A) 4082
(B) 4095
(C) 4096
(D) 8178
(E) 8191

Select one:

DLeave blank (1.5 points)
Question 23

Not yet answered
Marked out of 6

Isosceles trapezoid $A B C D$ has parallel sides $\overline{A D}$ and $\overline{B C}$, with $B C<A D$ and $A B=C D$. There is a point P in the plane such that $P A=1, P B=2, P C=3$, and $P D=4$. What is $\frac{B C}{A D} ?$
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) $\frac{2}{3}$
(E) $\frac{3}{4}$

Select one:
\bigcirc ACDELeave blank (1.5 points)

Question 24
Not yet answered
Marked out of 6

How many strings of length 5 formed from the digits $0,1,2,3,4$ are there such that for each $j \in\{1,2,3,4\}$, at least j of the digits are less than j ? (For example, 02214 satisfies this condition because it contains at least 1 digit less than 1 , at least 2 digits less than 2 , at least 3 digits less than 3 , and at least 4 digits less than 4 . The string 23404 does not satisfy the condition because it does not contain at least 2 digits less than 2.)
(A) 500
(B) 625
(C) 1089
(D) 1199
(E) 1296

Select one:ABCDLeave blank (1.5 points)

Question 25

Not yet answered

Marked out of 6

Let R, S, and T be squares that have vertices at lattice points (i.e., points whose coordinates are both integers) in the coordinate plane, together with their interiors. The bottom edge of each square is on the x-axis. The left edge of R and the right edge of S are on the y-axis, and R contains $\frac{9}{4}$ as many lattice points as does S. The top two vertices of T are in $R \cup S$, and T contains $\frac{1}{4}$ of the lattice points contained in $R \cup S$. See the figure (not drawn to scale).

The fraction of lattice points in S that are in $S \cap T$ is 27 times the fraction of lattice points in R that are in $R \cap T$. What is the minimum possible value of the edge length of R plus the edge length of S plus the edge length of T ?
(A) 336
(B) 337
(C) 338
(D) 339
(E) 340

Select one:
ABDLeave blank (1.5 points)

