

2022 AMC 10B

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1
Not yet answered
Marked out of 6

Define $x \diamond y$ to be $|x-y|$ for all real numbers x and y. What is the value of

$$
(1 \diamond(2 \diamond 3))-((1 \diamond 2) \diamond 3) ?
$$

(A) -2
(B) -1
(C) 0
(D) 1
(E) 2

Select one:ABCD
Leave blank (1.5 points)

Question 2

Not yet answered
Marked out of 6

In rhombus $A B C D$, point P lies on segment $\overline{A D}$ so that $\overline{B P} \perp \overline{A D}, A P=3$, and $P D=2$. What is the area of $A B C D$? (Note: The figure is not drawn to scale.)

(A) $3 \sqrt{5}$
(B) 10
(C) $6 \sqrt{5}$
(D) 20
(E) 25

Select one:

ABCDELeave blank (1.5 points)
Question 3

Not yet answered
Marked out of 6

Question 4

Not yet answered
Marked out of 6

How many three-digit positive integers have an odd number of even digits?
(A) 150
(B) 250
(C) 350
(D) 450
(E) 550

Select one:
A
Leave blank (1.5 points)

A donkey suffers an attack of hiccups and the first hiccup happens at $4: 00$ one afternoon. Suppose that the donkey hiccups regularly every 5 seconds. At what time does the donkey's 700th hiccup occur?
(A) 15 seconds after $4: 58$
(B) 20 seconds after $4: 58$
(C) 25 seconds after $4: 58$
(D) 30 seconds after $4: 58$
(E) 35 seconds after 4:58

Select one:ABCLeave blank (1.5 points)

Question 5
Not yet answered
Marked out of 6
(A) $\sqrt{3}$
(B) 2
(C) $\sqrt{15}$
(D) 4
(E) $\sqrt{105}$

Select one:
$\bigcirc \mathbf{A}$

- BDLeave blank (1.5 points)

Question 6
Not yet answered
Marked out of 6

How many of the first ten numbers of the sequence $121,11211,1112111, \ldots$ are prime numbers?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Select one:Leave blank (1.5 points)

Question 7
Not yet answered
Marked out of 6

For how many values of the constant k will the polynomial $x^{2}+k x+36$ have two distinct integer roots?
(A) 6
(B) 8
(C) 9
(D) 14
(E) 16

Select one:ABCDELeave blank (1.5 points)

Question 8
Not yet answered
Marked out of 6
Consider the following 100 sets of 10 elements each:

$$
\begin{aligned}
& \{1,2,3, \ldots, 10\} \\
& \{11,12,13, \ldots, 20\} \\
& \{21,22,23, \ldots, 30\} \\
& \vdots \\
& \{991,992,993, \ldots, 1000\} .
\end{aligned}
$$

How many of these sets contain exactly two multiples of 7 ?
(A) 40
(B) 42
(C) 43
(D) 49
(E) 50

Select one:ABCDLeave blank (1.5 points)

Question 9

Not yet answered
Marked out of 6
The sum

$$
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{2021}{2022!}
$$

can be expressed as $a-\frac{1}{b!}$, where a and b are positive integers. What is $a+b$?
(A) 2020
(B) 2021
(C) 2022
(D) 2023
(E) 2024

Select one:
ABCELeave blank (1.5 points)

Question 10

Not yet answered
Marked out of 6

Camila writes down five positive integers. The unique mode of these integers is 2 greater than their median, and the median is 2 greater than their arithmetic mean. What is the least possible value for the mode?
(A) 5
(B) 7
(C) 9
(D) 11
(E) 13

Select one:BDLeave blank (1.5 points)
,

D
E
\qquad
\qquad

Question 11
Not yet answered
Marked out of 6

All the high schools in a large school district are involved in a fundraiser selling T-shirts. Which of the choices below is logically equivalent to the statement "No school bigger than Euclid HS sold more T-shirts than Euclid HS"?
(A) All schools smaller than Euclid HS sold fewer T-shirts than Euclid HS.
(B) No school that sold more T-shirts than Euclid HS is bigger than Euclid HS.
(C) All schools bigger than Euclid HS sold fewer T-shirts than Euclid HS.
(D) All schools that sold fewer T-shirts than Euclid HS are smaller than Euclid HS.
(E) All schools smaller than Euclid HS sold more T-shirts than Euclid HS.

Select one:
$\bigcirc \mathbf{A}$BCDELeave blank (1.5 points)

Question 12

Not yet answered
Marked out of 6

A pair of fair 6 -sided dice is rolled n times. What is the least value of n such that the probability that the sum of the numbers face up on a roll equals 7 at least once is greater than $\frac{1}{2}$?
(A) 2
(B) 3
(C) 4
(D) 5
(E) 6

Select one:

BCDELeave blank (1.5 points)
Question 13

Not yet answered
Marked out of 6 -

The positive difference between a pair of primes is equal to 2 , and the positive difference between the cubes of the two primes is 31106 . What is the sum of the digits of the least prime that is greater than those two primes?
(A) 8
(B) 10
(C) 11
(D) 13
(E) 16

Select one:
ABCDLeave blank (1.5 points)

Question 14

Not yet answered
Marked out of 6

Suppose that S is a subset of $\{1,2,3, \cdots, 25\}$ such that the sum of any two (not necessarily distinct) elements of S is never an element of S. What is the maximum number of elements S may contain?

Select one:A
DE

Leave blank (1.5 points)

Question 15

Not yet answered
Marked out of 6

Let S_{n} be the sum of the first n term of an arithmetic sequence that has a common difference of 2 . The quotient $\frac{S_{3 n}}{S_{n}}$ does not depend on n. What is S_{20} ?
(A) 340
(B) 360
(C) 380
(D) 400
(E) 420

Select one:
\bigcirc ALeave blank (1.5 points)

Question 16

Not yet answered
Marked out of 6

The diagram below shows a rectangle with side lengths 4 and 8 and a square with side length 5 . Three vertices of the square lie on three different sides of the rectangle, as shown. What is the area of the region inside both the square and the rectangle?

(A) $15 \frac{1}{8}$
(B) $15 \frac{3}{8}$
(C) $15 \frac{1}{2}$
(D) $15 \frac{5}{8}$
(E) $15 \frac{7}{8}$

Select one:ABCDELeave blank (1.5 points)

Question 17

Not yet answered
Marked out of 6

One of the following numbers is not divisible by any prime number less than 10. Which is it?
(A) $2^{606}-1$
(B) $2^{606}+1$
(C) $2^{607}-1$
(D) $2^{607}+1$
(E) $2^{607}+3^{607}$

Select one:

ABCDELeave blank (1.5 points)Question 18
Not yet answered
Marked out of 6

Consider systems of three linear equations with unknowns x, y, and z,

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=0 \\
& a_{2} x+b_{2} y+c_{2} z=0 \\
& a_{3} x+b_{3} y+c_{3} z=0,
\end{aligned}
$$

where each of the coefficients is either 0 or 1 and the system has a solution other than $x=y=z=0$. For example, one such system is
$\langle 1 x+1 y+0 z=0,0 x+1 y+1 z=0,0 x+0 y+0 z=0\rangle$ with a nonzero solution of $(x, y, z)=(1,-1,1)$. How many such systems of equations are there? (The equations in a system need not be distinct, and two systems containing the same equations in a different order are considered different.)

Select one:

ABCDLeave blank (1.5 points)

Each square in a 5×5 grid is either filled or empty, and has up to eight adjacent neighboring squares, where neighboring squares share either a side or a corner. The grid is transformed by the following rules: Any filled square with two or three filled neighbors remains filled. Any empty square with exactly three filled neighbors becomes a filled square. All other squares remain empty or become empty. A sample transformation is shown in the figure below.

Suppose the 5×5 grid has a border of empty squares surrounding a 3×3 subgrid. How many initial configurations will lead to a transformed grid consisting of a single filled square in the center after a single transformation? (Rotations and reflections of the same configuration are considered different.)

(A) 14
(B) 18
(C) 22
(D) 26
(E) 30

Select one:ABCDELeave blank (1.5 points)

Question 20

Not yet answered
Marked out of 6

Let $A B C D$ be a rhombus with $\angle A D C=46^{\circ}$. Let E be the midpoint of $\overline{C D}$, and let F be the point on $\overline{B E}$ such that $\overline{A F}$ is perpendicular to $\overline{B E}$. What is the degree measure of $\angle B F C$?

Select one:

ALeave blank (1.5 points)
Question 21

Not yet answered
Marked out of 6

Let $P(x)$ be a polynomial with rational coefficients such that when $P(x)$ is divided by the polynomial $x^{2}+x+1$, the remainder is $x+2$, and when $P(x)$ is divided by the polynomial $x^{2}+1$, the remainder is $2 x+1$. There is a unique polynomial of least degree with these two properties. What is the sum of the squares of the coefficients of that polynomial?

Select one:

$\bigcirc \mathbf{A}$Leave blank (1.5 points)

Question 22

Not yet answered
Marked out of 6

Let S be the set of circles in the coordinate plane that are tangent to each of the three circles with equations $x^{2}+y^{2}=4, x^{2}+y^{2}=64$, and $(x-5)^{2}+y^{2}=3$. What is the sum of the areas of all circles in S ?
(A) 48π
(B) 68π
(C) 96π
(D) 102π
(E) 136π

Select one:

BCLeave blank (1.5 points)

Question 23

Not yet answered
Marked out of 6

Ant Amelia starts on the number line at 0 and crawls in the following manner. For $n=1,2,3$, Amelia chooses a time duration t_{n} and an increment x_{n} independently and uniformly at random from the interval $(0,1)$. During the nth step of the process, Amelia moves x_{n} units in the positive direction, using up t_{n} minutes. If the total elapsed time has exceeded 1 minute during the nth step, she stops at the end of that step; otherwise, she continues with the next step, taking at most 3 steps in all. What is the probability that Amelia's position when she stops will be greater than 1 ?
(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $\frac{2}{3}$
(D) $\frac{3}{4}$
(E) $\frac{5}{6}$

Select one:BDELeave blank (1.5 points)

Question 24

Not yet answered

Marked out of 6

Consider functions f that satisfy $|f(x)-f(y)| \leq \frac{1}{2}|x-y|$ for all real numbers x and y. Of all such functions that also satisfy the equation $f(300)=f(900)$, what is the greatest possible value of

$$
f(f(800))-f(f(400)) ?
$$

(A) 25
(B) 50
(C) 100
(D) 150
(E) 200

Select one:BLeave blank (1.5 points)

Question 25
Not yet answered
Marked out of 6

Let $x_{0}, x_{1}, x_{2}, \ldots$ be a sequence of numbers, where each x_{k} is either 0 or 1 . For each positive integer n, define

$$
S_{n}=\sum_{k=0}^{n-1} x_{k} 2^{k}
$$

Suppose $7 S_{n} \equiv 1\left(\bmod 2^{n}\right)$ for all $n \geq 1$. What is the value of the sum

$$
x_{2019}+2 x_{2020}+4 x_{2021}+8 x_{2022}
$$

(A) 6
(B) 7
(C) 12
(D) 14
(E) 15

Select one:ALeave blank (1.5 points)

