

2023 AMC 10B

Try this exam as a timed Mock Exam on the ZIML Practice Page (click here)

View answers and concepts tested in our 2023 AMC 10B+12B Blog Post (click here)

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1
Not yet answered
Points out of 6

Mrs. Jones is pouring orange juice into four identical glasses for her four sons. She fills the first three glasses completely but runs out of juice when the fourth glass is only $\frac{1}{3}$ full. What fraction of a glass must Mrs. Jones pour from each of the first three glasses into the fourth glass so that all four glasses will have the same amount of juice?
(A) $\frac{1}{12}$
(B) $\frac{1}{4}$
(C) $\frac{1}{6}$
(D) $\frac{1}{8}$
(E) $\frac{2}{9}$

Select one:

AB
Leave blank (1.5 points)

Question 2

Not yet answered
Points out of 6

Carlos went to a sports store to buy running shoes. Running shoes were on sale, with prices reduced by 20% on every pair of shoes. Carlos also knew that he had to pay a 7.5% sales tax on the discounted price. He had $\$ 43$. What is the original (before discount) price of the most expensive shoes he could afford to buy?
(A) $\$ 46$
(B) $\$ 50$
(C) $\$ 48$
(D) $\$ 47$
(E) $\$ 49$

Select one:

ABLeave blank (1.5 points)
Question 3

Not yet answered
Points out of 6 \rightarrow

A $3-4-5$ right triangle is inscribed in circle A, and a $5-12-13$ right triangle is inscribed in circle B. What is the ratio of the area of circle A to the area of circle B ?
(A) $\frac{9}{25}$
(B) $\frac{1}{9}$
(C) $\frac{1}{5}$
(D) $\frac{25}{169}$
(E) $\frac{4}{25}$

Select one:BLeave blank (1.5 points)

Question 4
Not yet answered

Points out of 6

Jackson's paintbrush makes a narrow strip with a width of 6.5 millimeters. Jackson has enough paint to make a strip 25 meters long. How many square centimeters of paper could Jackson cover with paint?
(A) 162,500
(B) 162.5
(C) 1,625
(D) $1,625,000$
(E) 16,250

Select one:

ABCDELeave blank (1.5 points)Question 5
Not yet answered
Points out of 6
(A) 10
(B) 5
(C) 6
(D) 8
(E) 9

Select one:

$\bigcirc \mathbf{C}$Leave blank (1.5 points)

Question 6

Not yet answered
Points out of 6

Let $L_{1}=1, L_{2}=3$, and $L_{n+2}=L_{n+1}+L_{n}$ for $n \geq 1$. How many terms in the sequence $L_{1}, L_{2}, L_{3}, \ldots, L_{2023}$ are even?
(A) 673
(B) 674
(C) 675
(D) 1010
(E) 1011

Select one:BCDLeave blank (1.5 points)

Question 7
Not yet answered
Points out of 6
(A) 24°
(B) 35°
(C) 30°
(D) 32°
(E) 20°

Select one:ABCDELeave blank (1.5 points)

Question 8

Not yet answered
Points out of 6

Square $A B C D$ is rotated 20° clockwise about its center to obtain square $E F G H$, as shown below. What is the degree measure of $\angle E A B$?

D

What is the units digit of $2022^{2023}+2023^{2022}$?
(A) 7
(B) 1
(C) 9
(D) 5
(E) 3

Select one:ABCDELeave blank (1.5 points)

Question 9

Not yet answered
Points out of 6

The numbers 16 and 25 are a pair of consecutive positive squares whose difference is 9 . How many pairs of consecutive positive perfect squares have a difference of less than or equal to 2023 ?
(A) 674
(B) 1011
(C) 1010
(D) 2019
(E) 2017

Select one:
$\bigcirc \mathbf{A}$
Leave blank (1.5 points)

You are playing a game. A 2×1 rectangle covers two adjacent squares (oriented either horizontally or vertically) of a 3×3 grid of squares, but you are not told which two squares are covered. Your goal is to find at least one square that is covered by the rectangle. A "turn" consists of you guessing a square, after which you are told whether that square is covered by the hidden rectangle. What is the minimum number of turns you need to ensure that at least one of your guessed squares is covered by the rectangle?
(A) 3
(B) 5
(C) 4
(D) 8
(E) 6

Select one:ALeave blank (1.5 points)

Question 11
Not yet answered
Points out of 6

Suzanne went to the bank and withdrew $\$ 800$. The teller gave her this amount using $\$ 20$ bills, $\$ 50$ bills, and $\$ 100$ bills, with at least one of each denomination. How many different collections of bills could Suzanne have received?
(A) 45
(B) 21
(C) 36
(D) 28
(E) 32

Select one:

ABCELeave blank (1.5 points)

Question 12

Not yet answered
Points out of 6

When the roots of the polynomial

$$
P(x)=(x-1)^{1}(x-2)^{2}(x-3)^{3} \cdots(x-10)^{10}
$$

are removed from the number line, what remains is the union of 11 disjoint open intervals. On how many of these intervals is $P(x)$ positive?
(A) 3
(B) 7
(C) 6
(D) 4
(E) 5

Select one:ABCDLeave blank (1.5 points)
D
E
\qquad

Question 13
Not yet answered
Points out of 6
(A) 2
(B) 8
(C) 4
(D) 15
(E) 12

Select one:A
Leave blank (1.5 points)

Question 14

Not yet answered
Points out of 6

How many ordered pairs of integers (m, n) satisfy the equation $m^{2}+m n+n^{2}=m^{2} n^{2} ?$
(A) 7
(B) 1
(C) 3
(D) 6
(E) 5

Select one:
$\bigcirc \mathbf{A}$CDELeave blank (1.5 points)

Question 15

Not yet answered
Points out of 6

What is the least positive integer m such that $m \cdot 2!\cdot 3!\cdot 4!\cdot 5!. .16$! is a perfect square?
(A) 30
(B) 30030
(C) 70
(D) 1430
(E) 1001

Select one:ABCDELeave blank (1.5 points)

Question 16

Not yet answered
Points out of 6

Define an upno to be a positive integer of 2 or more digits where the digits are strictly increasing moving left to right. Similarly, define a downno to be a positive integer of 2 or more digits where the digits are strictly decreasing moving left to right. For instance, the number 258 is an upno and 8620 is a downo. Let U equal the total number of upnos and let d equal the total number of downnos. What is $|U-D|$?
(A) 512
(B) 10
(C) 0
(D) 9
(E) 511

Select one:
$\bigcirc \mathbf{A}$
A
BLeave blank (1.5 points)

Question 17

Not yet answered
Points out of 6

A rectangular box \mathcal{P} has distinct edge lengths a, b, and c. The sum of the lengths of all 12 edges of \mathcal{P} is 13 , the areas of all 6 faces of \mathcal{P} is $\frac{11}{2}$, and the volume of \mathcal{P} is $\frac{1}{2}$. What is the length of the longest interior diagonal connecting two vertices of \mathcal{P} ?
(A) 2
(B) $\frac{3}{8}$
(C) $\frac{9}{8}$
(D) $\frac{9}{4}$
(E) $\frac{3}{2}$

Select one:
ABCDELeave blank (1.5 points)

Question 18
Not yet answered
Points out of 6 Pois

Suppose a, b, and c are positive integers such that

$$
\frac{a}{14}+\frac{b}{15}=\frac{c}{210}
$$

Which of the following statements are necessarily true?
I. If $\operatorname{gcd}(a, 14)=1$ or $\operatorname{gcd}(b, 15)=1$ or both, then $\operatorname{gcd}(c, 210)=1$.
II. If $\operatorname{gcd}(c, 210)=1$, then $\operatorname{gcd}(a, 14)=1$ or $\operatorname{gcd}(b, 15)=1$ or both.
III. $\operatorname{gcd}(c, 210)=1$ if and only if $\operatorname{gcd}(a, 14)=\operatorname{gcd}(b, 15)=1$.
(A) I, II, and III
(B) I only
(C) I and II only
(D) III only
(E) II and III only

Select one:A
$\bigcirc E$Leave blank (1.5 points)

Question 19
Not yet answered
Points out of 6

Sonya the frog chooses a point uniformly at random lying within the square $[0,6] \times[0,6]$ in the coordinate plane and hops to that point. She then randomly chooses a distance uniformly at random from $[0,1]$ and a direction uniformly at random from \{north, south, east, west\}. All he choices are independent. She now hops the distance in the chosen direction. What is the probability that she lands outside the square?
(A) $\frac{1}{6}$
(B) $\frac{1}{12}$
(C) $\frac{1}{4}$
(D) $\frac{1}{10}$
(E) $\frac{1}{9}$

Select one:

$\bigcirc \mathbf{A}$CDELeave blank (1.5 points)

Question 20

Not yet answered
Points out of 6
Four congruent semicircles are drawn on the surface of a sphere with radius 2 , as shown, creating a close curve that divides the surface into two congruent regions. The length of the curve is $\pi \sqrt{n}$. What is n ?

(A) 32
(B) 12
(C) 48
(D) 36
(E) 27

Select one:ABCDLeave blank (1.5 points)

```
Leave blank (1.5 points)
```


Question 21

Not yet answered
Points out of 6

Each of 2023 balls is randomly placed into one of 3 bins. Which of the following is closest to the probability that each of the bins will contain an odd number of balls?
(A) $\frac{2}{3}$
(B) $\frac{3}{10}$
(C) $\frac{1}{2}$
(D) $\frac{1}{3}$
(E) $\frac{1}{4}$

Select one:ABCDLeave blank (1.5 points)

Question 22
Not yet answered
Points out of 6
Point out of

Select one:
Leave blank (1.5 points)

Question 23

Not yet answered
Points out of 6

How many distinct values of x satisfy $\lfloor x\rfloor^{2}-3 x+2=0$, where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x ?
(A) an infinite number
(B) 4
(C) 2
(D) 3
(E) 0

B

An arithmetic sequence of positive integers has $n \geq 3$ terms, initial term a, and common difference $d \geq 1$. Carl wrote down all the terms in this sequence correctly except for one term, which was off by 1 . The sum of the terms he wrote was 222 . What is $a+d+n$?
(A) 24
(B) 20
(C) 22
(D) 28
(E) 26

Select one:

ADELeave blank (1.5 points)

Question 24

Not yet answered
Points out of 6

What is the perimeter of the boundary of the region consisting of all points which can be expressed as $(2 u-3 w, v+4 w)$ with $0 \leq u \leq 1,0 \leq v \leq 1$, and $0 \leq w \leq 1$?
(A) $10 \sqrt{3}$
(B) 10
(C) 12
(D) 18
(E) 16

Select one:

Leave blank (1.5 points)A

B

D

Question 25
Not yet answered
Points out of 6

A regular pentagon with area $\sqrt{5}+1$ is printed on paper and cut out. The five vertices of the pentagon are folded into the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon?
(A) $4-\sqrt{5}$
(B) $\sqrt{5}-1$
(C) $8-3 \sqrt{5}$
(D) $\frac{\sqrt{5}+1}{2}$
(E) $\frac{2+\sqrt{5}}{3}$

Select one:

A
\bigcirc E
Leave blank (1.5 points)

