

2011 AMC 12A

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1

Not yet answered

Points out of 6

A cell phone plan costs 20 dollars each month, plus 5 cents per text message sent, plus 10 cents for each minute used over 30 hours. In January Michelle sent 100 text messages and talked for 30.5 hours. How much did she have to pay?
(A) 24.00
(B) 24.50
(C) 25.50
(D) 28.00
(E) 30.00

Select one:
Leave blank (1.5 points)

There are 5 coins placed flat on a table according to the figure.

What is the order of the coins from top to bottom?
(A) (C, A, E, D, B)
(B) (C, A, D, E, B)
(C) (C, D, E, A, B)
(D) (C, E, A, D, B)
(E) (C, E, D, A, B)

Select one:

DLeave blank (1.5 points)
Question 3

Not yet answered
Points out of 6
\qquad
(A) 11
(B) 12
(C) 13
(D) 14
(E) 15

Select one:
$\bigcirc \mathbf{A}$
B
Leave blank (1.5 points)hold 500 milliliters of shampoo. Jasmine wants to buy the minimum number of small bottles necessary to completely fill a large bottle. How many bottles must she buy?

D

```
Leave blank (1.5 points)
```


Question 4

Not yet answered
Points out of 6

At an elementary school, the students in third grade, fourth grade, and fifth grade run an average of 12,15 , and 10 minutes per day, respectively. There are twice as many third graders as fourth graders, and twice as many fourth graders as fifth graders. What is the average number of minutes run per day by these students?
(A) 12
(B) $\frac{37}{3}$
(C) $\frac{88}{7}$
(D) 13
(E) 14

Select one:

- A
Leave blank (1.5 points)

Question 5

Not yet answered

Points out of 6
\qquad
(A) 20
(B) 30
(C) 40
(D) 50
(E) 60

Select one:
$\bigcirc \mathbf{A}$
BD
Leave blank (1.5 points)Last summer 30% of the birds living on Town Lake were geese, 25% were swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were geese?

E

Question 6

Not yet answered
Points out of 6

The players on a basketball team made some three-point shots, some two-point shots, and some one-point free throws. They scored as many points with two-point shots as with threepoint shots. Their number of successful free throws was one more than their number of successful two-point shots. The team's total score was 61 points. How many free throws did they make?
(A) 13
(B) 14
(C) 15
(D) 16
(E) 17

Select one:

- B
-

Leave blank (1.5 points)

Question 7

Not yet answered
Points out of 6

A majority of the 30 students in Ms. Demeanor's class bought pencils at the school bookstore. Each of these students bought the same number of pencils, and this number was greater than 1 . The cost of a pencil in cents was greater than the number of pencils each student bought, and the total cost of all the pencils was 17.71 . What was the cost of a pencil in cents?
(A) 7
(B) 11
(C) 17
(D) 23
(E) 77

Select one:AB
DLeave blank (1.5 points)

Question 8
Not yet answered
Points out of 6

In the eight term sequence A, B, C, D, E, F, G, H, the value of C is 5 and the sum of any three consecutive terms is 30 . What is $A+H$?
(A) 17
(B) 18
(C) 25
(D) 26
(E) 43

Select one:
$\bigcirc \mathbf{A}$
Leave blank (1.5 points)

Question 9

Not yet answered
Points out of 6

At a twins and triplets convention, there were 9 sets of twins and 6 sets of triplets, all from different families. Each twin shook hands with all the twins except his/her siblings and with half the triplets. Each triplet shook hands with all the triplets except his/her siblings and with half the twins. How many handshakes took place?
(A) 324
(B) 441
(C) 630
(D) 648
(E) 882

Select one:

- ELeave blank (1.5 points)

Question 10

Not yet answered
Points out of 6

A pair of standard 6 -sided dice is rolled once. The sum of the numbers rolled determines the diameter of a circle. What is the probability that the numerical value of the area of the circle is less than the numerical value of the circle's circumference?
(A) $\frac{1}{36}$
(B) $\frac{1}{12}$
(C) $\frac{1}{6}$
(D) $\frac{1}{4}$
(E) $\frac{5}{18}$

Select one:
Leave blank (1.5 points)

Question 11
Not yet answered
Points out of 6

Question 12
Not yet answered
Points out of 6

What is the area inside circle C but outside circle A and circle B ?
(A) $3-\frac{\pi}{2}$
(B) $\frac{\pi}{2}$
(C) 2
(D) $\frac{3 \pi}{4}$
(E) $1+\frac{\pi}{2}$

Select one:Leave blank (1.5 points)
Circles A, B, and C each have radius 1 . Circles A and B share one point of tangency. Circle C has a point of tangency with the midpoint of $\overline{A B}$.

A power boat and a raft both left dock A on a river and headed downstream. The raft drifted at the speed of the river current. The power boat maintained a constant speed with respect to the river. The power boat reached dock B downriver, then immediately turned and traveled back upriver. It eventually met the raft on the river 9 hours after leaving dock A. How many hours did it take the power boat to go from A to B ?
(A) 3
(B) 3.5
(C) 4
(D) 4.5
(E) 5

Select one:

- A
CDE
Leave blank (1.5 points)

Question 13
Not yet answered
Points out of 6

Triangle $A B C$ has side-lengths $A B=12, B C=24$, and $A C=18$. The line through the incenter of $\triangle A B C$ parallel to $\overline{B C}$ intersects $\overline{A B}$ at M and $\overline{A C}$ at N. What is the perimeter of $\triangle A M N$?
(A) 27
(B) 30
(C) 33
(D) 36
(E) 42

Select one:D
Leave blank (1.5 points)

Question 14

Not yet answered
Points out of 6

Suppose a and b are single-digit positive integers chosen independently and at random. What is the probability that the point (a, b) lies above the parabola $y=a x^{2}-b x$?
(A) $\frac{11}{81}$
(B) $\frac{13}{81}$
(C) $\frac{5}{27}$
(D) $\frac{17}{81}$
(E) $\frac{19}{81}$

Select one:ABELeave blank (1.5 points)

Question 15
Not yet answered
Points out of 6

Question 16

Not yet answered
Points out of 6
(A) $3 \sqrt{2}$
(B) $\frac{13}{3}$
(C) $4 \sqrt{2}$
(D) 6
(E) $\frac{13}{2}$

Select one:
$\bigcirc \mathbf{A}$

- B
- ELeave blank (1.5 points)
The circular base of a hemisphere of radius 2 rests on the base of a square pyramid of height 6 . The hemisphere is tangent to the other four faces of the pyramid. What is the edge-length of the base of the pyramid?
- D

Question 17
Not yet answered
Points out of 6 \longrightarrow
(A) $\frac{3}{5}$
(B) $\frac{4}{5}$
(C) 1
(D) $\frac{6}{5}$
(E) $\frac{4}{3}$

Select one:Leave blank (1.5 points)

Question 18
Not yet answered
Points out of 6

Suppose that $|x+y|+|x-y|=2$. What is the maximum possible value of $x^{2}-6 x+y^{2} ?$
(A) 5
(B) 6
(C) 7
(D) 8
(E) 9

Select one:BLeave blank (1.5 points)

At a competition with N players, the number of players given elite status is equal to $2^{1+\left\lfloor\log _{2}(N-1)\right\rfloor}-N$. Suppose that 19 players are given elite status. What is the sum of the two smallest possible values of N ?
(A) 38
(B) 90
(C) 154
(D) 406
(E) 1024

Select one:ADELeave blank (1.5 points)

Question 20

Not yet answered
Points out of 6

Let $f(x)=a x^{2}+b x+c$, where a, b, and c are integers. Suppose that $f(1)=0$, $50<f(7)<60,70<f(8)<80,5000 k<f(100)<5000(k+1)$ for some integer k. What is k ?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Select one:

- A
- B
Leave blank (1.5 points)

Question 21

Not yet answered
Points out of 6 -

Let $f_{1}(x)=\sqrt{1-x}$, and for integers $n \geq 2$, let $f_{n}(x)=f_{n-1}\left(\sqrt{n^{2}-x}\right)$. If N is the largest value of n for which the domain of f_{n} is nonempty, the domain of f_{N} is $[c]$. What is $N+c$?
(A) -226
(B) -144
(C) -20
(D) 20
(E) 144

Select one:

- A
Leave blank (1.5 points)

Question 22

Not yet answered
Points out of 6

Let R be a square region and $n \geq 4$ an integer. A point X in the interior of R is called n ray partitional if there are n rays emanating from X that divide R into n triangles of equal area. How many points are 100-ray partitional but not 60 -ray partitional?
(A) 1500
(B) 1560
(C) 2320
(D) 2480
(E) 2500

Select one:

Leave blank (1.5 points)Question 23
Not yet answered
Points out of 6
Let $f(z)=\frac{z+a}{z+b}$ and $g(z)=f(f(z))$, where a and b are complex numbers. Suppose that $|a|=1$ and $g(g(z))=z$ for all z for which $g(g(z))$ is defined. What is the difference between the largest and smallest possible values of $|b|$?
(A) 0
(B) $\sqrt{2}-1$
(C) $\sqrt{3}-1$
(D) 1
(E) 2

Select one:

- ALeave blank (1.5 points)

Question 24

Not yet answered
Points out of 6

Consider all quadrilaterals $A B C D$ such that $A B=14, B C=9, C D=7$, and $D A=12$. What is the radius of the largest possible circle that fits inside or on the boundary of such a quadrilateral?
(A) $\sqrt{15}$
(B) $\sqrt{21}$
(C) $2 \sqrt{6}$
(D) 5
(E) $2 \sqrt{7}$

Select one:DLeave blank (1.5 points)

Question 25
Not yet answered
Points out of 6

Triangle $A B C$ has $\angle B A C=60^{\circ}, \angle C B A \leq 90^{\circ}, B C=1$, and $A C \geq A B$. Let H, I, and O be the orthocenter, incenter, and circumcenter of $\triangle A B C$, respectively. Assume that the area of pentagon $B C O I H$ is the maximum possible. What is $\angle C B A$?
(A) 60°
(B) 72°
(C) 75°
(D) 80°
(E) 90°

Select one:

- A
- B
Leave blank (1.5 points)

