

2022 AMC 12A

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Not yet answered

Points out of 6

What is the value of

$$3 + \frac{1}{3 + \frac{1}{3 + \frac{1}{3}}}$$
?

- (A) $\frac{31}{10}$ (B) $\frac{49}{15}$ (C) $\frac{33}{10}$ (D) $\frac{109}{33}$ (E) $\frac{15}{4}$

Select one:

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Question 2

Not yet answered

Points out of 6

The sum of three numbers is 96. The first number is 6 times the third number, and the third number is 40 less than the second number. What is the absolute value of the difference between the first and second numbers?

- **(A)** 1

- **(B)** 2 **(C)** 3 **(D)** 4 **(E)** 5

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Not yet answered

Points out of 6

Five rectangles, A, B, C, D, and E, are arranged in a square as shown below. These rectangles have dimensions 1×6 , 2×4 , 5×6 , 2×7 , and 2×3 , respectively. (The figure is not drawn to scale.) Which of the five rectangles is the shaded one in the middle?

- **(A)** *A*
- **(B)** *B*
- (C) C
- **(D)** *D*
- $(\mathbf{E}) E$

Select one:

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Question 4

Not yet answered

Points out of 6

The least common multiple of a positive divisor n and 18 is 180, and the greatest common divisor of n and 45 is 15. What is the sum of the digits of n?

- **(A)** 3
- **(B)** 6
- (C) 8 (D) 9
- **(E)** 12

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Question 5 Not yet answered Points out of 6	The $taxicab\ distance$ between points (x_1,y_1) and (x_2,y_2) in the coordinate plane is given by $ x_1-x_2 + y_1-y_2 $. For how many points P with integer coordinates is the taxicab distance between P and the origin less than or equal to 20 ?						
Points out of 6	(A) 441 Select one:	(B) 761	(C) 841	(D) 921	(E) 924		
Question 6 Not yet answered	A data set consists of 6 (not distinct) positive integers: $1, 7, 5, 2, 5$, and X . The average (arithmetic mean) of the 6 numbers equals a value in the data set. What is the sum of all positive values of X ?						
Points out of 6	(A) 10 Select one:	(B) 26	(C) 32	(D) 36	(E) 40		

Not yet answered

Points out of 6

A rectangle is partitioned into 5 regions as shown. Each region is to be painted a solid color - red, orange, yellow, blue, or green - so that regions that touch are painted different colors, and colors can be used more than once. How many different colorings are possible?

- **(A)** 120
- **(B)** 270
- **(C)** 360
- **(D)** 540
- **(E)** 720

Select one:

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Question 8

Not yet answered

Points out of 6

The infinite product

$$\sqrt[3]{10}\cdot\sqrt[3]{\sqrt[3]{10}}\cdot\sqrt[3]{\sqrt[3]{\sqrt[3]{10}}}\dots$$

evaluates to a real number. What is that number?

- **(A)** $\sqrt{10}$
- **(B)** $\sqrt[3]{100}$ **(C)** $\sqrt[4]{1000}$
- **(D)** 10 **(E)** $10\sqrt[3]{10}$

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Not yet answered

Points out of 6

On Halloween 31 children walked into the principal's office asking for candy. They can be classified into three types: Some always lie; some always tell the truth; and some alternately lie and tell the truth. The alternaters arbitrarily choose their first response, either a lie or the truth, but each subsequent statement has the opposite truth value from its predecessor. The principal asked everyone the same three questions in this order.

"Are you a truth-teller?" The principal gave a piece of candy to each of the 22 children who answered yes.

"Are you an alternater?" The principal gave a piece of candy to each of the $15\,$ children who answered yes.

"Are you a liar?" The principal gave a piece of candy to each of the 9 children who answered yes.

How many pieces of candy in all did the principal give to the children who always tell the truth?

(A)7

(B) 12

(C) 21

(D) 27

(E) 31

Select one:

 \bigcirc A

 \bigcirc B

 \bigcirc C

 \bigcirc D

 \bigcirc E

Leave blank (1.5 points)

Question 10

Not yet answered

Points out of 6

How many ways are there to split the integers 1 through 14 into 7 pairs such that in each pair, the greater number is at least 2 times the lesser number?

(A) 108

(B) 120

(C) 126

(D) 132

(E) 144

Select one:

 \bigcirc A

ОВ

 \bigcirc C

 \bigcirc D

 \bigcirc E

○ Leave blank (1.5 points)

Question 11 Not yet answered Points out of 6	What is the product of all real numbers x such that the distance on the number line between $\log_6 x$ and $\log_6 9$ is twice the distance on the number line between $\log_6 10$ and 1 ? (A) 10 (B) 18 (C) 25 (D) 36 (E) 81 Select one: A B C C D Leave blank (1.5 points)									
Question 12	Let M be the midpoint of AB in regular tetrahedron $ABCD$. What is $\cos(\angle CMD)$?									
Not yet answered Points out of 6	(A) $\frac{1}{4}$ (B) $\frac{1}{3}$ (C) $\frac{2}{5}$ (D) $\frac{1}{2}$ (E) $\frac{\sqrt{3}}{2}$									
	Select one:									
	○ A									
	○ B									
	○ c									
	○ D									
	○ E									
	○ Leave blank (1.5 points)									
a :: 42										
Question 13	Let \mathcal{R} be the region in the complex plane consisting of all complex numbers z that can be written as the sum of complex numbers z_1 and z_2 , where z_1 lies on the segment with endpoints 3 and $4i$, and z_2 has magnitude at most 1 . What integer is closest to the area of									
Not yet answered										
Points out of 6	\mathcal{R} ? (A) 13 (B) 14 (C) 15 (D) 16 (E) 17									
	Select one:									
	\bigcirc A									
	○ B									
	○ c									
	\bigcirc D									
	○ E									
	○ Leave blank (1.5 points)									

Not yet answered

Points out of 6

What is the value of

$$(\log 5)^3 + (\log 20)^3 + (\log 8)(\log 0.25)$$

where \log denotes the base-ten logarithm?

- **(A)** $\frac{3}{2}$
- (B) $\frac{7}{4}$ (C) 2 (D) $\frac{9}{4}$ (E) 3

Select one:

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \cap E
- Contact Con

Question 15

Not yet answered

Points out of 6

The roots of the polynomial $10x^3 - 39x^2 + 29x - 6$ are the height, length, and width of a rectangular box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the original box by 2 units. What is the volume of the new box?

(A)
$$\frac{24}{5}$$
 (B) $\frac{42}{5}$ (C) $\frac{81}{5}$ (D) 30 (E) 48

(B)
$$\frac{42}{5}$$

(C)
$$\frac{81}{5}$$

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Not yet answered

Points out of 6

A triangular number is a positive integer that can be expressed in the form $t_n=1+2+3+\cdots+n$, for some positive integer n. The three smallest triangular numbers that are also perfect squares are $t_1=1=1^2$, $t_8=36=6^2$, and $t_{49}=1225=35^2$. What is the sum of the digits of the fourth smallest triangular number that is also a perfect square?

Select one:

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Question 17

Not yet answered

Points out of 6

Suppose a is a real number such that the equation

$$a \cdot (\sin x + \sin (2x)) = \sin (3x)$$

has more than one solution in the interval $(0,\pi)$. The set of all such a that can be written in the form

$$(p,q)\cup (q,r),$$

where p, q, and r are real numbers with p < q < r. What is p + q + r?

- (A) 4 (B) 1 (C) 0 (D) 1
- **(E)** 4

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Let T_k be the transformation of the coordinate plane that first rotates the plane k degrees counterclockwise around the origin and then reflects the plane across the y -axis. What is the least positive integer n such that performing the sequence of transformations $T_1, T_2, T_3, \cdots, T_n$ returns the point $(1,0)$ back to itself?							
(A) 359 (B)	360 (C) 719	(D) 720 (E)	721				
Select one: A B C D E Leave blank (1	.5 points)						
Suppose that 13 cards numbered $1,2,3,\ldots,13$ are arranged in a row. The task is to pick them up in numerically increasing order, working repeatedly from left to right. In the example below, cards $1,2,3$ are picked up on the first pass, 4 and 5 on the second pass, 6 on the third pass, $7,8,9,10$ on the fourth pass, and $11,12,13$ on the fifth pass. For how many of the $13!$ possible orderings of the cards will the 13 cards be picked up in exactly two passes?							
7 1	1 8 6 4 5	9 12 1 13	10 2 3				
(A) 4082 (B) 4095 (C) 4096	(D) 8178	(E) 8191				
Select one:							
○ A							
○ B							

Points out of 6

Question 19

Points out of 6

Not yet answered

 \circ c

 \bigcirc D

 \bigcirc E

○ Leave blank (1.5 points)

Not yet answered

Not yet answered

Points out of 6

Isosceles trapezoid ABCD has parallel sides \overline{AD} and \overline{BC} , with BC < AD and AB=CD. There is a point P in the plane such that PA=1,PB=2,PC=3, and PD = 4. What is $\frac{BC}{AD}$?

- (A) $\frac{1}{4}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{2}{3}$ (E) $\frac{3}{4}$

Select one:

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Question 21

Not yet answered

Points out of 6

Let

$$P(x) = x^{2022} + x^{1011} + 1.$$

Which of the following polynomials is a factor of P(x)?

(A)
$$x^2 - x + 1$$
 (B) $x^2 + x + 1$ **(C)** $x^4 + 1$

(B)
$$x^2 + x + 1$$

(C)
$$x^4 + 1$$

(D)
$$x^6 - x^3 + 1$$
 (E) $x^6 + x^3 + 1$

(E)
$$x^6 + x^3 + 1$$

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Not yet answered

Points out of 6

Let c be a real number, and let z_1 and z_2 be the two complex numbers satisfying the equation $z^2-cz+10=0$. Points $z_1, z_2, \frac{1}{z_1}$, and $\frac{1}{z_2}$ are the vertices of (convex) quadrilateral Q in the complex plane. When the area of Q obtains its maximum possible value, c is closest to which of the following?

- **(A)** 4.5
- **(B)** 5
- (C) 5.5
- **(D)** 6
- (E) 6.5

Select one:

- \bigcirc A
- B
- C
- \bigcirc D
- E
- Leave blank (1.5 points)

Question 23

Not yet answered

Points out of 6

Let h_n and k_n be the unique relatively prime positive integers such that

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \frac{h_n}{k_n}.$$

Let L_n denote the least common multiple of the numbers $1,2,3,\cdots,n$. For how many integers n with $1\leq n\leq 22$ is $k_n< L_n$?

- \bigcirc A
- \bigcirc B
- \cap C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)

Not yet answered

Points out of 6

How many strings of length 5 formed from the digits 0, 1, 2, 3, 4 are there such that for each $j \in \{1, 2, 3, 4\}$, at least j of the digits are less than j? (For example, 02214satisfies this condition because it contains at least 1 digit less than 1, at least 2 digits less than 2, at least 3 digits less than 3, and at least 4 digits less than 4. The string 23404 does not satisfy the condition because it does not contain at least 2 digits less than 2.)

- **(A)** 500
- **(B)** 625
- **(C)** 1089
- **(D)** 1199
- **(E)** 1296

Select one:

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \cap E
- Leave blank (1.5 points)

Question 25

Not yet answered

Points out of 6

A circle with integer radius r is centered at (r, r). Distinct line segments of length c_i connect points $(0,a_i)$ to $(b_i,0)$ for $1\leq i\leq 14$ and are tangent to the circle, where a_i,b_i , and c_i are all positive integers and $c_1 \leq c_2 \leq \cdots \leq c_{14}$. What is the ratio $\frac{c_{14}}{c_1}$ for the

- least possible value of r?

- (A) $\frac{21}{5}$ (B) $\frac{85}{13}$ (C) 7 (D) $\frac{39}{5}$ (E) 17

- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- \bigcirc E
- Leave blank (1.5 points)