

2022 AMC 12A

For more practice and resources, visit ziml.areteem.org

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1
Not yet answered
Points out of 6

What is the value of
(A) $\frac{31}{10}$
(B) $\frac{49}{15}$
(C) $\frac{33}{10}$
(D) $\frac{109}{33}$
(E) $\frac{15}{4}$
Select one:ABCDELeave blank (1.5 points)

Question 2
Not yet answered
Points out of 6

The sum of three numbers is 96 . The first number is 6 times the third number, and the third number is 40 less than the second number. What is the absolute value of the difference between the first and second numbers?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Select one:
ABE
Leave blank (1.5 points)

Question 3

Not yet answered
Points out of 6
(A) A
(B) B
(C) C
(D) D
(E) E

Select one:
$\bigcirc \mathbf{A}$DLeave blank (1.5 points)

Question 4

Not yet answered
Points out of 6

The least common multiple of a positive divisor n and 18 is 180 , and the greatest common divisor of n and 45 is 15 . What is the sum of the digits of n ?
(A) 3
(B) 6
(C) 8
(D) 9
(E) 12

Select one:ABCDELeave blank (1.5 points)

Question 5
Not yet answered
Points out of 6

Question 7

Not yet answered
Points out of 6
(A) 120
(B) 270
(C) 360
(D) 540
(E) 720

Select one:CDELeave blank (1.5 points)

The infinite product

$$
\sqrt[3]{10} \cdot \sqrt[3]{\sqrt[3]{10}} \cdot \sqrt[3]{\sqrt[3]{\sqrt[3]{10}}} \cdots
$$

evaluates to a real number. What is that number?
(A) $\sqrt{10}$
(B) $\sqrt[3]{100}$
(C) $\sqrt[4]{1000}$
(D) 10
(E) $10 \sqrt[3]{10}$

Select one:ABCDELeave blank (1.5 points)

Question 8

Not yet answered
Points out of 6

A rectangle is partitioned into 5 regions as shown. Each region is to be painted a solid color - red, orange, yellow, blue, or green - so that regions that touch are painted different colors, and colors can be used more than once. How many different colorings are possible?

A
B

A

Question 9

Not yet answered
Points out of 6

Question 10

Not yet answered
Points out of 6

On Halloween 31 children walked into the principal's office asking for candy. They can be classified into three types: Some always lie; some always tell the truth; and some alternately lie and tell the truth. The alternaters arbitrarily choose their first response, either a lie or the truth, but each subsequent statement has the opposite truth value from its predecessor. The principal asked everyone the same three questions in this order.
"Are you a truth-teller?" The principal gave a piece of candy to each of the 22 children who answered yes.
"Are you an alternater?" The principal gave a piece of candy to each of the 15 children who answered yes.
"Are you a liar?" The principal gave a piece of candy to each of the 9 children who answered yes.

How many pieces of candy in all did the principal give to the children who always tell the truth?
(A) 7
(B) 12
(C) 21
(D) 27
(E) 31

Select one:

BLeave blank (1.5 points)How many ways are there to split the integers 1 through 14 into 7 pairs such that in each pair, the greater number is at least 2 times the lesser number?
(A) 108
(B) 120
(C) 126
(D) 132
(E) 144

Select one:

ABLeave blank (1.5 points)Question 11
Not yet answered
Points out of 6
(A) 10
(B) 18
(C) 25
(D) 36
(E) 81

Select one:
$\bigcirc \mathbf{A}$
CDELeave blank (1.5 points)
What is the product of all real numbers x such that the distance on the number line between $\log _{6} x$ and $\log _{6} 9$ is twice the distance on the number line between $\log _{6} 10$ and 1?
E

Let M be the midpoint of $A B$ in regular tetrahedron $A B C D$. What is $\cos (\angle C M D)$?
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{2}{5}$
(D) $\frac{1}{2}$
(E) $\frac{\sqrt{3}}{2}$

Points out of 6

Question 12

Not yet answered

Select one:Leave blank (1.5 points)

Question 13
Not yet answered
Points out of 6

Let \mathcal{R} be the region in the complex plane consisting of all complex numbers z that can be written as the sum of complex numbers z_{1} and z_{2}, where z_{1} lies on the segment with endpoints 3 and $4 i$, and z_{2} has magnitude at most 1 . What integer is closest to the area of \mathcal{R} ?
(A) 13
(B) 14
(C) 15
(D) 16
(E) 17

Select one:

ALeave blank (1.5 points)What is the value of

$$
(\log 5)^{3}+(\log 20)^{3}+(\log 8)(\log 0.25)
$$

where \log denotes the base-ten logarithm?
(A) $\frac{3}{2}$
(B) $\frac{7}{4}$
(C) 2
(D) $\frac{9}{4}$
(E) 3

Select one:CDELeave blank (1.5 points)

Question 15

Not yet answered
Points out of 6

The roots of the polynomial $10 x^{3}-39 x^{2}+29 x-6$ are the height, length, and width of a rectangular box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the original box by 2 units. What is the volume of the new box?
(A) $\frac{24}{5}$
(B) $\frac{42}{5}$
(C) $\frac{81}{5}$
(D) 30
(E) 48

Select one:ABCDLeave blank (1.5 points)

Question 16
Not yet answered
Points out of 6

A triangular number is a positive integer that can be expressed in the form $t_{n}=1+2+3+\cdots+n$, for some positive integer n. The three smallest triangular numbers that are also perfect squares are $t_{1}=1=1^{2}$, $t_{8}=36=6^{2}$, and $t_{49}=1225=35^{2}$. What is the sum of the digits of the fourth smallest triangular number that is also a perfect square?

Select one:DELeave blank (1.5 points)

Question 17
Not yet answered
Points out of 6

Supppose a is a real number such that the equation

$$
a \cdot(\sin x+\sin (2 x))=\sin (3 x)
$$

has more than one solution in the interval $(0, \pi)$. The set of all such a that can be written in the form

$$
(p, q) \cup(q, r)
$$

where p, q, and r are real numbers with $p<q<r$. What is $p+q+r$?
(A) -4
(B) -1
(C) 0
(D) 1
(E) 4

Select one:

$\bigcirc \mathbf{A}$Leave blank (1.5 points)

Question 18

Not yet answered Points out of 6

Question 19

Not yet answered
Points out of 6
(A) 359
(B) 360
(C) 719
(D) 720
(E) 721

Select one:

Leave blank (1.5 points)Let T_{k} be the transformation of the coordinate plane that first rotates the plane k degrees counterclockwise around the origin and then reflects the plane across the y-axis. What is the least positive integer n such that performing the sequence of transformations $T_{1}, T_{2}, T_{3}, \cdots, T_{n}$ returns the point $(1,0)$ back to itself?
\bigcirc A
$\bigcirc \mathbf{C}$
\bigcirc D

Suppose that 13 cards numbered $1,2,3, \ldots, 13$ are arranged in a row. The task is to pick them up in numerically increasing order, working repeatedly from left to right. In the example below, cards $1,2,3$ are picked up on the first pass, 4 and 5 on the second pass, 6 on the third pass, $7,8,9,10$ on the fourth pass, and $11,12,13$ on the fifth pass. For how many of the 13 ! possible orderings of the cards will the 13 cards be picked up in exactly two passes?

(A) 4082
(B) 4095
(C) 4096
(D) 8178
(E) 8191

Select one:

BLeave blank (1.5 points)Question 20
Not yet answered
Points out of 6

Isosceles trapezoid $A B C D$ has parallel sides $\overline{A D}$ and $\overline{B C}$, with $B C<A D$ and $A B=C D$. There is a point P in the plane such that $P A=1, P B=2, P C=3$, and $P D=4$. What is $\frac{B C}{A D} ?$
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) $\frac{2}{3}$
(E) $\frac{3}{4}$

Select one:
\bigcirc AELeave blank (1.5 points)

Question 21 Let

$$
P(x)=x^{2022}+x^{1011}+1
$$

Which of the following polynomials is a factor of $P(x)$?
(A) $x^{2}-x+1$
(B) $x^{2}+x+1$
(C) $x^{4}+1$
(D) $x^{6}-x^{3}+1$
(E) $x^{6}+x^{3}+1$

Select one:Leave blank (1.5 points)

Question 22

Not yet answered
Points out of 6

Let c be a real number, and let z_{1} and z_{2} be the two complex numbers satisfying the equation $z^{2}-c z+10=0$. Points $z_{1}, z_{2}, \frac{1}{z_{1}}$, and $\frac{1}{z_{2}}$ are the vertices of (convex) quadrilateral Q in the complex plane. When the area of Q obtains its maximum possible value, c is closest to which of the following?
(A) 4.5
(B) 5
(C) 5.5
(D) 6
(E) 6.5

Select one:
$\bigcirc \mathbf{A}$BCDELeave blank (1.5 points)

Question 23

Not yet answered
Points out of 6

Let h_{n} and k_{n} be the unique relatively prime positive integers such that

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\frac{h_{n}}{k_{n}} .
$$

Let L_{n} denote the least common multiple of the numbers $1,2,3, \cdots, n$. For how many integers n with $1 \leq n \leq 22$ is $k_{n}<L_{n}$?

Select one:BDLeave blank (1.5 points)

Question 24
Not yet answered
Points out of 6

Question 25

Not yet answered
Points out of 6
than 2 , at least 3 digits less than 3 , and at least 4 digits less than 4 . The string 23404 does not satisfy the condition because it does not contain at least 2 digits less than 2.)
(A) 500
(B) 625
(C) 1089
(D) 1199
(E) 1296

Select one:ABC
ELeave blank (1.5 points)
How many strings of length 5 formed from the digits $0,1,2,3,4$ are there such that for each $j \in\{1,2,3,4\}$, at least j of the digits are less than j ? (For example, 02214 satisfies this condition because it contains at least 1 digit less than 1 , at least 2 digits less
,
\bigcirc D

A circle with integer radius r is centered at (r, r). Distinct line segments of length c_{i} connect points $\left(0, a_{i}\right)$ to $\left(b_{i}, 0\right)$ for $1 \leq i \leq 14$ and are tangent to the circle, where a_{i}, b_{i}, and c_{i} are all positive integers and $c_{1} \leq c_{2} \leq \cdots \leq c_{14}$. What is the ratio $\frac{c_{14}}{c_{1}}$ for the least possible value of r ?
(A) $\frac{21}{5}$
(B) $\frac{85}{13}$
(C) 7
(D) $\frac{39}{5}$
(E) 17

Select one:BDLeave blank (1.5 points)

