

2023 AMC 12A

Try this exam as a timed Mock Exam on the ZIML Practice Page (click here)

View answers and concepts tested in our 2023 AMC 10A+12A Blog Post (click here)

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1
Not yet answered
Points out of 6

Cities A and B are 45 miles apart. Alicia lives in A and Beth lives in B. Alicia bikes towards B at 18 miles per hour. Leaving at the same time, Beth bikes toward A at 12 miles per hour. How many miles from City A will they be when they meet?
(A) 20
(B) 24
(C) 25
(D) 26
(E) 27

Select one:
ABE
Leave blank (1.5 points)

Question 2

Not yet answered
Points out of 6

The weight of $\frac{1}{3}$ of a large pizza together with $3 \frac{1}{2}$ cups of orange slices is the same as the weight of $\frac{3}{4}$ of a large pizza together with $\frac{1}{2}$ cup of orange slices. A cup of orange slices weighs $\frac{1}{4}$ of a pound. What is the weight, in pounds, of a large pizza?
(A) $1 \frac{4}{5}$
(B) 2
(C) $2 \frac{2}{5}$
(D) 3
(E) $3 \frac{3}{5}$

Select one:

ABCDELeave blank (1.5 points)

Question 3

Not yet answered
Points out of 6 Point

How many positive perfect squares less than 2023 are divisible by 5 ?
(A) 8
(B) 9
(C) 10
(D) 11
(E) 12

Select one:

ABCDELeave blank (1.5 points)

Question 4

Not yet answered
Points out of 6

How many digits are in the base-ten representation of $8^{5} \cdot 5^{10} \cdot 15^{5}$?
(A) 14
(B) 15
(C) 16
(D) 17
(E) 18

Select one:

ABCDELeave blank (1.5 points)

Question 5

Not yet answered
Points out of 6

Janet rolls a standard 6-sided die 4 times and keeps a running total of the numbers she rolls. What is the probability that at some point, her running total will equal 3 ?
(A) $\frac{2}{9}$
(B) $\frac{49}{216}$
(C) $\frac{25}{108}$
(D) $\frac{17}{72}$
(E) $\frac{13}{54}$

Select one:

ABCDLeave blank (1.5 points)
Question 6

Not yet answered
Points out of 6
(A) $2 \sqrt{11}$
(B) $4 \sqrt{3}$
(C) 8
(D) $4 \sqrt{5}$
(E) 9

Select one:
A
,

Leave blank (1.5 points)

Question 7

Not yet answered
Points out of 6

A digital display shows the current date as an 8 -digit integer consisting of a 4 -digit year, followed by a 2-digit month, followed by a 2 -digit date within the month. For example, Arbor Day this year is displayed as 20230428 . For how many dates in 2023 will each digit appear an even number of times in the 8 -digital display for that date?
(A) 5
(B) 6
(C) 7
(D) 8
(E) 9

Select one:

Leave blank (1.5 points)

Question 8

Not yet answered
Points out of 6

Maureen is keeping track of the mean of her quiz scores this semester. If Maureen scores an 11 on the next quiz, her mean will increase by 1 . If she scores an 11 on each of the next three quizzes, her mean will increase by 2 . What is the mean of her quiz scores currently?
(A) 4
(B) 5
(C) 6
(D) 7
(E) 8

Select one:ABCDLeave blank (1.5 points)

Question 9

Not yet answered
Points out of 6 -

A square of area 2 is inscribed in a square of area 3, creating four congruent triangles, as shown below. What is the ratio of the shorter leg to the longer leg in the shaded right triangle?

(A) $\frac{1}{5}$
(B) $\frac{1}{4}$
(C) $2-\sqrt{3}$
(D) $\sqrt{3}-\sqrt{2}$
(E) $\sqrt{2}-1$

Select one:ADLeave blank (1.5 points)

Question 10
Not yet answered
Points out of 6

Positive real numbers x and y satisfy $y^{3}=x^{2}$ and $(y-x)^{2}=4 y^{2}$. What is $x+y$?
(A) 12
(B) 18
(C) 24
(D) 36
(E) 42

Select one:
ABLeave blank (1.5 points)

Question 11
Not yet answered
Points out of 6
(A) 30
(B) 37.5
(C) 45
(D) 52.5
(E) 60

Select one:ALeave blank (1.5 points)

Question 12

Not yet answered
Points out of 6

What is the degree measure of the acute angle formed by lines with slopes 2 and $\frac{1}{3}$?

E

D
E -

What is the value of

$$
2^{3}-1^{3}+4^{3}-3^{3}+6^{3}-5^{3}+\cdots+18^{3}-17^{3} ?
$$

(A) 2023
(B) 2679
(C) 2941
(D) 3159
(E) 3235

Select one:AC
\bigcirc DLeave blank (1.5 points)

Question 13
Not yet answered
Points out of 6
\qquad

In a table tennis tournament every participant played every other participant exactly once. Although there were twice as many right-handed players as left-handed players, the number of games won by left-handed players was 40% more than the number of games won by right-handed players. (There were no ties and no ambidextrous players.) What is the total number of games played?
(A) 15
(B) 36
(C) 45
(D) 48
(E) 66

Select one:ABC
\bigcirc DLeave blank (1.5 points)

Question 14

Not yet answered
Points out of 6

How many complex numbers satisfy the equation $z^{5}=\bar{z}$, where \bar{z} is the conjugate of the complex number z ?
(A) 2
(B) 3
(C) 5
(D) 6
(E) 7

Select one:ABCDLeave blank (1.5 points)

Question 15

Not yet answered
Points out of 6

Usain is walking for exercise by zigzagging across a 100 -meter by 30 -meter rectangular field, beginning at point A and ending on the segment $\overline{B C}$. He wants to increase the distance walked by zigzagging as shown in the figure below ($A P Q R S$). What angle θ $\angle P A B=\angle Q P C=\angle R Q B=\cdots$ will produce in a length that is 120 meters? (This figure is not drawn to scale. Do not assume that he zigzag path has exactly four segments as shown; there could be more or fewer.)

(A) $\arccos \frac{5}{6}$
(B) $\arccos \frac{4}{5}$
(C) $\arccos \frac{3}{10}$
(D) $\arcsin \frac{4}{5}$
(E) $\arcsin \frac{5}{6}$

Select one:
$\bigcirc \mathbf{A}$
BLeave blank (1.5 points)

Question 16

Not yet answered
Points out of 6

Consider the set of complex numbers z satisfying $\left|1+z+z^{2}\right|=4$. The maximum value of the imaginary part of z can be written in the form $\frac{\sqrt{m}}{n}$, where m and n are relatively prime positive integers. What is $m+n$?
(A) 20
(B) 21
(C) 22
(D) 23
(E) 24

Select one:

BCDELeave blank (1.5 points)Question 17
Not yet answered
Points out of 6

Flora the frog starts at 0 on the number line and makes a sequence of jumps to the right. In any one jump, independent of previous jumps, Flora leaps a positive integer distance m with probability $\frac{1}{2^{m}}$.
What is the probability that Flora will eventually land at 10 ?
(A) $\frac{5}{512}$
(B) $\frac{45}{1024}$
(C) $\frac{127}{1024}$
(D) $\frac{511}{1024}$
(E) $\frac{1}{2}$

Select one:CDELeave blank (1.5 points)

Not yet answered
Points out of 6
Circle C_{1} and C_{2} each have radius 1 , and the distance between their centers is $\frac{1}{2}$. Circle C_{3} is the largest circle internally tangent to both C_{1} and C_{2}. Circle C_{4} is internally tangent to both C_{1} and C_{2} and externally tangent to C_{3}. What is the radius of C_{4} ?

(A) $\frac{1}{14}$
(B) $\frac{1}{12}$
(C) $\frac{1}{10}$
(D) $\frac{3}{28}$
(E) $\frac{1}{9}$

Select one:ABCDELeave blank (1.5 points)

Question 19
Not yet answered
Points out of 6

What is the product of all solutions to the equation

$$
\log _{7 x} 2023 \cdot \log _{289 x} 2023=\log _{2023 x} 2023 ?
$$

(A) $\left(\log _{2023} 7 \cdot \log _{2023} 289\right)^{2}$
(B) $\log _{2023} 7 \cdot \log _{2023} 289$
(C) 1
(D) $\log _{7} 2023 \cdot \log _{289} 2023$
(E) $\left(\log _{7} 2023 \cdot \log _{289} 2023\right)^{2}$

Select one:
$\bigcirc \mathbf{A}$
B
\bigcirc DLeave blank (1.5 points)

Question 20

Not yet answered
Points out of 6

Rows $1,2,3,4$, and 5 of a triangular array of integers are shown below.

Each row after the first row is formed by placing a 1 at each end of the row, and each interior entry is 1 greater than the sum of the two numbers diagonally above it in the previous row. What is the units digits of the sum of the 2023 numbers in the 2023rd row?
(A) 1
(B) 3
(C) 5
(D) 7
(E) 9

Select one:
$\bigcirc \mathbf{A}$
$\bigcirc \mathbf{C}$Leave blank (1.5 points)

Question 21
Not yet answered
Points out of 6

If A and B are vertices of a polyhedron, define the distance $d(A, B)$ to be the minimum number of edges of the polyhedron one must traverse in order to connect A and B. For example, if $\overline{A B}$ is an edge of the polyhedron, then $d(A, B)=1$, but if $\overline{A C}$ and $\overline{C B}$ are edges and $\overline{A B}$ is not an edge, then $d(A, B)=2$. Let Q, R, and S be randomly chosen distinct vertices of a regular icosahedron (regular polyhedron made up of 20 equilateral triangles). What is the probability that $d(Q, R)>d(R, S)$?
(A) $\frac{7}{22}$
(B) $\frac{1}{3}$
(C) $\frac{3}{8}$
(D) $\frac{5}{12}$
(E) $\frac{1}{2}$

Select one:

ABCDELeave blank (1.5 points)Question 22
Not yet answered
Points out of 6

Let f be the unique function defined on the positive integers such that

$$
\sum_{d \mid n} d \cdot f\left(\frac{n}{d}\right)=1
$$

for all positive integers n. What is $f(2023)$?
(A) -1536
(B) 96
(C) 108
(D) 116
(E) 144

Select one:BCDLeave blank (1.5 points)

Question 23
Not yet answered
Points out of 6

How many ordered pairs of positive real numbers (a, b) satisfy the equation

$$
(1+2 a)(2+2 b)(2 a+b)=32 a b ?
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) an infinite number

Select one:
A
$\bigcirc \mathbf{C}$
Leave blank (1.5 points)

Question 24

Not yet answered
Points out of 6

Let K be the number of sequences $A_{1}, A_{2}, \ldots, A_{n}$ such that n is a positive integer less than or equal to 10 , each A_{i} is a subset of $\{1,2,3, \ldots, 10\}$, and A_{i-1} is a subset of A_{i} for each i between 2 and n, inclusive. For example, $\},\{5,7\},\{2,5,7\},\{2,5,7\}$, $\{2,5,6,7,9\}$ is one such sequence, with $n=5$. What is the remainder when K is divided by 10 ?
(A) 1
(B) 3
(C) 5
(D) 7
(E) 9

Select one:ABCDELeave blank (1.5 points)

Question 25
There is a unique sequence of integers $a_{1}, a_{2}, \cdots, a_{2023}$ such that
Not yet answered
Points out of 6

$$
\tan 2023 x=\frac{a_{1} \tan x+a_{3} \tan ^{3} x+a_{5} \tan ^{5} x+\cdots+a_{2023} \tan ^{2023} x}{1+a_{2} \tan ^{2} x+a_{4} \tan ^{4} x+\cdots+a_{2022} \tan ^{2022} x}
$$

whenever $\tan 2023 x$ is defined. What is a_{2023} ?
(A) -2023
(B) -2022
(C) -1
(D) 1
(E) 2023

Select one:

Leave blank (1.5 points)