

2024 AMC 12B

Try this exam as a timed Mock Exam on the ZIML Practice Page (click here)

View answers and concepts tested in our 2024 AMC 10B+12B Blog Post (click here)

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1 Not yet answered	In a long line of people arranged left to right, the 1013th person from the left is also the 1010th person from the right. How many people are in the line?							
Marked out of 6	(A) 2021	(B) 2022	(C) 2023	(D) 2024	(E) 2025			
	Select one:							
	A (
	⊖ В							
	○ C							
	○ D							
	○ E							
	○ Leave bl	ank (1.5 points	5)					

Question 2	What is $10! - 7! \cdot 6!$?
Not yet answered	$(A) - 120 (B) \ 0 (C) \ 120 (D) \ 600 (E) \ 720$
Marked out of 6	Select one: A B C D E Leave blank (1.5 points)

Question 3	For how many integer values of x is $ 2x \leq 7\pi?$							
Not yet answered	(A) 16	(B) 17	(C) 19	(D) 20	(E) 21			
Marked out of 6	Calastana							
	Selectione							
	○ A							
	⊖ В							
	○ C							
	○ D							
	○ E							
	⊖ Leave	blank (1.5 p	oints)					

) 1 1	Question 4 Not yet answered Marked out of 6	Balls numl following p The next 3 after balls deposited	Balls numbered $1, 2, 3, \ldots$ are deposited in 5 bins, labeled A, B, C, D, and E, using the following procedure. Ball 1 is deposited in bin A, and balls 2 and 3 are deposited in bin B. The next 3 balls are deposited in bin C, the next 4 in bin D, and so on, cycling back to bin A after balls are deposited in bin E. (For example, balls numbered $22, 23, \ldots, 28$ are deposited in bin B at step 7 of this process.) In which bin is ball 2024 deposited?								
		(A) A	(A) A (B) B (C) C (D) D (E) E								
		Select one	e:								
		○ A									
		ОВ									
		○ C									
		○ D									
		○ E									
		🔿 Leave	e blank (1.5	points)							

Question 5 In the following expression, Melanie changed some of the plus signs to minus signs: Not yet answered $1 + 3 + 5 + 7 + \ldots + 97 + 99$ Marked out of 6 When the new expression was evaluated, it was negative. What is the least number of plus signs that Melanie could have changed to minus signs? **(A)** 14 **(C)** 16 **(D)** 17 **(E)** 18 **(B)** 15 Select one: \bigcirc A ⊖ В \bigcirc C \bigcirc D

○ E

Question 6 Not yet answered Marked out of 6	The national debt of the United States is on track to reach 5×10^{13} dollars by 2033. How many digits does this number of dollars have when written as a numeral in base 5? (The approximation of $\log_{10} 5$ as 0.7 is sufficient for this problem)							
	(A) 18	(B) 20	(C) 22	(D) 24	(E) 26			
	Select one A B C D E	blank (1 5 n	oints)					

Question 8	What value of x satisfies							
Not yet answered	$\log_2 x \cdot \log_2 x$							
Marked out of 6	$\frac{-\log_2 x + \log_3 x}{\log_2 x + \log_3 x} = 2?$							
	(A) 25 (B) 32 (C) 36 (D) 42 (E) 48							
	Select one:							
	\bigcirc A							
	○ B							
	○ C							
	○ D							
	○ E							
	○ Leave blank (1.5 points)							

Question 9 Not yet answered Marked out of 6	A dartboard is the region B in the coordinate plane consisting of points (x, y) such that $ x + y \le 8$. A target T is the region where $(x^2 + y^2 - 25)^2 \le 49$. A dart is thrown and lands at a random point in B. The probability that the dart lands in T can be expressed as $\frac{m}{n} \cdot \pi$, where m and n are relatively prime positive integers. What is $m + n$? (A) 39 (B) 71 (C) 73 (D) 75 (E) 135								
	Select one:								
	○ A								
	ОВ								
	⊖ с								
	○ D								
	○ E								
	⊖ Leave	blank (1.5 p	oints)						

Question 10 Not yet answered	A list of 9 real numbers consists of 1, 2.2, 3.2, 5.2, 6.2, and 7, as well as x, y , and z with $x \le y \le z$. The range of the list is 7, and the mean and the median are both positive integers. How many ordered triples (x, y, z) are possible?							
	(A) 1	(B) 2	(C) 3	(D) 4	(\mathbf{E}) infinitely many			
	Select or A B C D E Leav	ne: ve blank (1.	5 points)					

Not yet answered

Marked out of 6

Suppose *z* is a complex number with positive imaginary part, with real part greater than 1, and with |z| = 2. In the complex plane, the four points 0, *z*, *z*², and *z*³ are the vertices of a quadrilateral with area 15. What is the imaginary part of *z*? (A) $\frac{3}{4}$ (B) 1 (C) $\frac{4}{3}$ (D) $\frac{3}{2}$ (E) $\frac{5}{3}$ Select one: \bigcirc A \bigcirc B \bigcirc C \bigcirc D

○ E

Question 13	There are real numbers x,y,h and k that satisfy the system of equations							
Not yet answered	$x^2+y^2-6x-8y=h,$							
	$x^2+y^2-10x+4y=k.$							
	What is the minimum possible value of $h+k$?							
	(A) - 54 (B) - 46 (C) - 34 (D) - 16 (E) 16							
	Select one:							
	○ A							
	○ B							
	 ○ C ○ D 							
	○ E							
	 Leave blank (1.5 points) 							

Question 14 Not yet answered	How many different remainders can result when the 100 th power of an integer is divided l $125?$						
Marked out of 6	(A) 1	(B) 2	(C) 5	(D) 25	(E) 125		
	Select on A B C D E Leav	ie: ve blank (1.4	5 points)				

Question 15 Not yet answered	A triangle in the coordinate plane has vertices $A(\log_2 1, \log_2 2)$, $B(\log_2 3, \log_2 4)$, and $C(\log_2 7, \log_2 8)$. What is the area of $\triangle ABC$?							
Marked out of 6	(A) $\log_2 \frac{\sqrt{3}}{7}$	(B) $\log_2 \frac{3}{\sqrt{7}}$	(C) $\log_2 \frac{7}{\sqrt{3}}$	(D) $\log_2 \frac{11}{\sqrt{7}}$	(E) $\log_2 \frac{11}{\sqrt{3}}$			
	Select one:							
	○ A							
	⊖ В							
	○ C							
	○ D							
	○ E							
	○ Leave blank	(1.5 points)						

Question 16 Not yet answered Marked out of 6	A group of 16 people will be partitioned into 4 indistinguishable 4-person committees. Each committee will have one chairperson and one secretary. The number of different ways to make these assignments can be written as 3^rM , where r and M are positive integers and M is not divisible by 3. What is r ?									
	(A) 5	(B) 6	(C) 7	(D) 8	(E) 9					
	Select on	ie:								
	○ A									
	ОВ									
	⊖ с	○ c								
	O D									
	○ E									
	⊖ Leav	○ Leave blank (1.5 points)								

Not yet answered

Marked out of 6

Integers a and b are randomly chosen without replacement from the set of integers with absolute value not exceeding 10. What is the probability that the polynomial $x^3 + ax^2 + bx + 6$ has 3 distinct integer roots?

(A)
$$\frac{1}{240}$$
 (B) $\frac{1}{221}$ (C) $\frac{1}{105}$ (D) $\frac{1}{84}$ (E) $\frac{1}{63}$.

Select one:

- A
- ⊖ **B**
- \bigcirc C
- \bigcirc D
- E
- Leave blank (1.5 points)

Question 18	The Fibonacci numbers are defined by $F_1=1,F_2=1$, and $F_n=F_{n-1}+F_{n-2}$ for $n\geq 3$. What is							
Not yet answered								
Marked out of 6	$rac{F_2}{F_1}+rac{F_4}{F_2}+rac{F_6}{F_3}+\dots+rac{F_{20}}{F_{10}}?$							
	(A) 318 (B) 319 (C) 320 (D) 321 (E) 322							
	Select one:							
	\bigcirc A							
	○ B							
	○ c							
	\bigcirc D							
	○ E							
	○ Leave blank (1.5 points)							

В

A

Select one:

- \bigcirc A
- O B
- C
- \bigcirc D
- E
- Leave blank (1.5 points)

the length of the line segment from A to the midpoint of \overline{BC} . Define a function f by letting							
f(x) be the area of $ riangle ABC$. Then the domain of f is an open interval (p,q) , and the maximum value r of $f(x)$ occurs at $x=s$. What is $p+q+r+s$?							
(A) 909 (B) 910 (C) 911 (D) 912 (E) 913							
Select one:							
 A B 							
							 C D E Leave blank (1.5 points)
The measures of the smallest angles of three different right triangles sum to 90° . All three							
triangles have side lengths that are primitive Pythagorean triples. Two of them are							
5 - 4 - 5 and $5 - 12 - 15$. What is the perimeter of the third thangle? (A) 40 (B) 126 (C) 154 (D) 176 (E) 208							
$(\mathbf{A}) = (\mathbf{B}) = 120$ $(\mathbf{C}) = 154$ $(\mathbf{D}) = 170$ $(\mathbf{E}) = 200$							
Select one:							
\bigcirc A							
○ B							
○ c							
○ D							
○ E							
○ Leave blank (1.5 points)							
Let $\triangle ABC$ be a triangle with integer side lengths and the property that $\angle B = 2 \angle A$. What is the least possible perimeter of such a triangle?							
Let $\triangle ABC$ be a triangle with integer side lengths and the property that $\angle B = 2 \angle A$. What is the least possible perimeter of such a triangle? (A) 13 (B) 14 (C) 15 (D) 16 (E) 17							
Let $\triangle ABC$ be a triangle with integer side lengths and the property that $\angle B = 2 \angle A$. What is the least possible perimeter of such a triangle? (A) 13 (B) 14 (C) 15 (D) 16 (E) 17							
Let $\triangle ABC$ be a triangle with integer side lengths and the property that $\angle B = 2 \angle A$. What is the least possible perimeter of such a triangle? (A) 13 (B) 14 (C) 15 (D) 16 (E) 17 Select one:							
Let $\triangle ABC$ be a triangle with integer side lengths and the property that $\angle B = 2 \angle A$. What is the least possible perimeter of such a triangle? (A) 13 (B) 14 (C) 15 (D) 16 (E) 17 Select one: \bigcirc A							

\bigcirc	D
\bigcirc	_

○ E

Not yet answered

Marked out of 6

A right pyramid has regular octagon ABCDEFGH with side length 1 as its base and apex V. Segments \overline{AV} and \overline{DV} are perpendicular. What is the square of the height of the pyramid?

(A) 1 (B)
$$\frac{1+\sqrt{2}}{2}$$
 (C) $\sqrt{2}$ (D) $\frac{3}{2}$ (E) $\frac{2+\sqrt{2}}{3}$

Select one:

- A○ B
- **C**
- D
- E

Question 24 Not yet answered Marked out of 6	What is th such that which <i>a</i> , <i>b</i> respective that can b	ne number of there exists b, and <i>c</i> are ely? (Recall be inscribed	of ordered tri a (non-dego the lengths that the inra in the triang	ered triples (a, b, c) of positive integers, with $a \le b \le c \le 9$, on-degenerate) triangle $\triangle ABC$ with an integer inradius for engths of the altitudes from A to \overline{BC} , B to \overline{AC} , and C to \overline{AB} , the inradius of a triangle is the radius of the largest possible circle e triangle.)				
	(A) 2	(B) 3	(C) 4	(D) 5	(E) 6			
	Select one:							
	○ A							
	○ B							
	○ C							
	○ D							
	○ E							
	 Leave blank (1.5 points) 							

Not yet answered

Marked out of 6

Pablo will decorate each of 6 identical white balls with either a striped or a dotted pattern, using either red or blue paint. He will decide on the color and pattern for each ball by flipping a fair coin for each of the 12 decisions he must make. After the paint dries, he will place the 6 balls in an urn. Frida will randomly select one ball from the urn and note its color and pattern. The events "the ball Frida selects is red" and "the ball Frida selects is striped" may or may not be independent, depending on the outcome of Pablo's coin flips. The probability that these two events are independent can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. What is m? (Recall that two events A and B are independent if $P(A \text{ and } B) = P(A) \cdot P(B)$.)

(A) 243 (B) 245 (C) 247 (D) 249 (E) 251
Select one:
A
B
C
D
E
Leave blank (1.5 points)