

2023 AMC 8

Try this exam as a timed Mock Exam on the ZIML Practice Page (click here)

View answers and concepts tested in our 2023 AMC 8 Blog Post (click here)

The problems in the AMC-Series Contests are copyrighted by American Mathematics Competitions at Mathematical Association of America (www.maa.org).

Question 1
Not yet answered
Points out of 6

What is the value of $(8 \times 4+2)-(8+4 \times 2) ?$
(A) 0
(B) 6
(C) 10
(D) 18
(E) 24

Select one:AB
$\bigcirc \mathbf{C}$DE

Question 2

Not yet answered
Points out of 6

A square piece of paper is folded twice into four equal quarters, as shown below, then cut along the dashed line. When unfolded, the paper will match which of the following figures?

(A)

(C)

(D)

Select one:ABCDE
A
(B)

(E)

Question 3

Not yet answered
Points out of 6

Question 4

Not yet answered
Points out of 6

Wind chill is a measure of how cold people feel when exposed to wind outside. A good estimate for wind chill can be found using this calculation

$$
(\text { wind chill })=(\text { air temperature })-0.7 \times(\text { wind speed }),
$$

where temperature is measured in degrees Fahrenheit (${ }^{\circ} \mathrm{F}$) and and the wind speed is measured in miles per hour (mph). Suppose the air temperature is $36^{\circ} \mathrm{F}$ and the wind speed is 18 mph . Which of the following is closest to the approximate wind chill?
(A) 18
(B) 23
(C) 28
(B) 32
(E) 35

Select one:

ABCDEThe numbers from 1 to 49 are arranged in a spiral pattern on a square grid, beginning at the center. The first few numbers have been entered into the grid below. Consider the four numbers that will appear in the shaded squares, on the same diagonal as the number 7 . How many of these four numbers are prime?

		5	4	3		
		6	1	2		
		7				

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Select one:

BCDE
Question 5

Not yet answered
Points out of 6 Point out of

A lake contains 250 trout, along with a variety of other fish. When a marine biologist catches and releases a sample of 180 fish from the lake, 30 are identified as trout. Assume that the ratio of trout to the total number of fish is the same in both the sample and the lake. How many fish are there in the lake?
(A) 1250
(B) 1500
(C) 1750
(D) 1800
(E) 2000

Select one:

$\bigcirc \mathbf{A}$
B
$\bigcirc \mathbf{C}$DE

Question 6

Not yet answered
Points out of 6

The digits $2,0,2$, and 3 are placed in the expression below, one digit per box. What is the maximum possible value of the expression?

(A) 0
(B) 8
(C) 9
(D) 16
(E) 18

Select one:
$\bigcirc \mathbf{A}$

- BCE
D
(

Not yet answered
Points out of 6

A rectangle, with sides parallel to the x-axis and y-axis, has opposite vertices located at $(15,3)$ and $(16,5)$. A line drawn through points $A(0,0)$ and $B(3,1)$. Another line is drawn through points $C(0,10)$ and $D(2,9)$. How many points on the rectangle lie on at least one of the two lines?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Select one:ABC

Question 8
Not yet answered
Points out of 6

Lola, Lolo, Tiya, and Tiyo participated in a ping pong tournament. Each player competed against each of the other three players exactly twice. Shown below are the win-loss records for the players. The numbers 1 and 0 represent a win or loss, respectively. For example, Lola won five matches and lost the fourth match. What was Tiyo's win-loss record?

Player	Result
Lola	111011
Lolo	101010
Tiya	010100
Tiyo	??????

(A) 000101
(B) 001001
(C) 010000
(D) 010101
(E) 011000

Select one:
$\bigcirc \mathbf{A}$
BD

Question 9

Not yet answered
Points out of 6

Malaika is skiing on a mountain. The graph below shows her elevation, in meters, above the base of the mountain as she skis along a trail. In total, how many seconds does she spend at an elevation between 4 and 7 meters?

(A) 6
(B) 8
(C) 10
(D) 12
(E) 14

Select one:B

Question 10
Not yet answered
Points out of 6
\qquad porcupine ate $\frac{1}{3}$ of what the moose left behind. How much of the original pie still remained after the porcupine left?
(A) $\frac{1}{12}$
(B) $\frac{1}{6}$
(C) $\frac{1}{4}$
(D) $\frac{1}{3}$
(E) $\frac{5}{12}$

Select one:ABC
\bigcirc D
$\bigcirc E$

Question 11

Not yet answered
Points out of 6
Harold made a plum pie to take on a picnic. He was able to eat only $\frac{1}{4}$ of the pie, and he left the rest for his friends. A moose came by and ate $\frac{1}{3}$ of what Harold left behind. After that, a

NASA's Perseverance Rover was launched on July 30, 2020. After traveling 292,526,838 miles, it landed on Mars in Jezero Crater about 6.5 months later. Which of the following is closest to the Rover's average interplanetary speed in miles per hour?
(A) 6,000
(B) 12,000
(C) 60,000
(D) 120,000
(E) 600,000

Select one:
$\bigcirc \mathbf{A}$

- BC
\bigcirc DO E

Question 12

Not yet answered
Points out of 6 -

The figure below shows a large white circle with a number of smaller white and shaded circles in its interior. What fraction of the interior of the large white circle is shaded?

(A) $\frac{1}{4}$
(B) $\frac{11}{36}$
(C) $\frac{1}{3}$
(D) $\frac{19}{36}$
(E) $\frac{5}{9}$

Select one:ABCDE

Question 13

Not yet answered
Points out of 6

Along the route of a bicycle race, 7 water stations are evenly spaced between the start and finish lines, as shown in the figure below. There are also 2 repair stations evenly spaced between the start and finish lines. The 3rd water station is located 2 miles after the 1st repair station. How long is the race in miles?

(A) 8
(B) 16
(C) 24
(D) 48
(E) 96

Select one:ABCDE

Question 14

Not yet answered
Points out of 6

Question 15
Not yet answered
Points out of 6

Nicolas is planning to send a package to his friend Anton, who is a stamp collector. To pay for the postage, Nicolas would like to cover the package with a large number of stamps. Suppose he has a collection of 20 of each of 5 cent, 10 cent, and 25 cent stamps. What is the GREATEST number of stamps that Nicolas can use to make exactly $\$ 7.10$ in postage?
(Note: The amount $\$ 7.10$ corresponds to 7 dollars and 10 cents. One dollar is worth 100 cents.)
(A) 45
(B) 46
(C) 51
(D) 52
(E) 55

Select one:
$\bigcirc \mathbf{A}$

- B
$\bigcirc \mathbf{C}$
\bigcirc D
○ E

Viswam walks half a mile to get to school each day. His route consists of 10 city blocks of equal length and he takes 1 minute to walk each block. Today, after walking 5 blocks, Viswam discovers he has to make a detour, walking 3 blocks of equal length instead of 1 block to reach the next corner. From the time he starts his detour, at what speed, in mph, must he walk, in order to get to school at his usual time?

(A) 4
(B) 4.2
(C) 4.5
(D) 4.8
(E) 5

Select one:BCDE

Question 16
Not yet answered
Points out of 6

\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
Q	R	P	Q	R	\cdots
P	Q	R	P	Q	\cdots
R	P	Q	R	P	\cdots
Q	R	P	Q	R	\cdots
P	Q	R	P	Q	\cdots

(A) $132 \mathrm{Ps}, 134 \mathrm{Qs}, 134 \mathrm{Rs}$
(B) $133 \mathrm{Ps}, 133 \mathrm{Qs}, 134 \mathrm{Rs}$
(C) $133 \mathrm{Ps}, 134 \mathrm{Qs}, 133 \mathrm{Rs}$
(D) $134 \mathrm{Ps}, 132 \mathrm{Qs}, 134 \mathrm{Rs}$
(E) $134 \mathrm{Ps}, 133 \mathrm{Qs}, 133 \mathrm{Rs}$

Select one:
○ \mathbf{A}

- B

○ \mathbf{C}
○ D
O E

Question 17
Not yet answered
Points out of 6
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Select one:ABCDE

Question 18

Not yet answered
Points out of 6

A regular octahedron has eight equilateral triangle faces with four faces meeting at each vertex. Jun will make the regular octahedrons shown on the right by folding the piece of paper shown on the left. Which numbered face will end up to the right of Q ?

Greta Grasshopper sits on a long line of lily pads in a pond. From any lily pad, Greta can jump 5 pads to the right or 3 pads to the left. What is the fewest number of jumps Greta must make to reach the lilly pad located 2023 pads to the right of her starting position?
(A) 405
(B) 407
(C) 409
(D) 411
(E) 413

Select one:

ABCDE
Question 19

Not yet answered
Points out of 6

An equilateral triangle is placed inside a larger equilateral triangle so that the region between them can be divided into three congruent trapezoids, as shown below. The side length of the inner triangle is $\frac{2}{3}$ the side length of the larger triangle. What is the ratio of the area of one trapezoid to the area of the inner triangle?

(A) $1: 3$
(B) $3: 8$
(C) $5: 12$
(D) $7: 16$
(E) $4: 9$

Select one:

ABCDE

Question 20
Not yet answered
Points out of 6

Two integers are inserted into the list $3,3,8,11,28$ to double its range. The mode and median remain unchanged. What is the maximum possible sum of the two additional numbers?
(A) 56
(B) 57
(C) 58
(D) 60
(E) 61

Select one:

ABE

Question 21
Not yet answered
Points out of 6

Alina writes the numbers $1,2, \ldots, 9$ on separate cards, one number per card. She wishes to divide the cards into 3 groups of 3 cards so that the sum of the numbers in each group will be the same. In how many ways can this be done?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Select one:
$\bigcirc \mathbf{A}$
ABCDE

Question 22
Not yet answered
Points out of 6

In a sequence of positive integers, each term after the second is the product of the previous two terms. The sixth term is 4000 . What is the first term?
(A) 1
(B) 2
(C) 4
(D) 5
(E) 10

Select one:ABC
\bigcirc D

Question 23
Not yet answered
Points out of 6

Each square in a 3×3 grid is randomly filled with one of the 4 gray and white tiles shown below on the right.

What is the probability that the tiling will contain a large gray diamond in one of the smaller 2×2 grids? Below is an example of such tiling.

(A) $\frac{1}{1024}$
(B) $\frac{1}{256}$
(C) $\frac{1}{64}$
(D) $\frac{1}{16}$
(E) $\frac{1}{4}$

Select one:
\bigcirc A
BCD

Isosceles $\triangle A B C$ has equal side lengths $A B$ and $B C$. In the figure below, segments are drawn parallel to $\overline{A C}$ so that the shaded portions of $\triangle A B C$ have the same area. The heights of the two unshaded portions are 11 and 5 units, respectively. What is the height of h of $\triangle A B C$?

(A) 14.6
(B) 14.8
(C) 15
(D) 15.2
(E) 15.4

Select one:
\bigcirc ACD
\square

Question 25
Not yet answered
Points out of 6

Fifteen integers $a_{1}, a_{2}, a_{3}, \ldots, a_{15}$ are arranged in order on a number line. The integers are equally spaced and have the property that

$$
1 \leq a_{1} \leq 10, \quad 13 \leq a_{2} \leq 20, \quad 241 \leq a_{15} \leq 250
$$

What is the sum of digits of a_{14} ?
(A) 8
(B) 9
(C) 10
(D) 11
(E) 12

Select one:
$\bigcirc \mathrm{A}$BCDE

